42 research outputs found

    Identification of antigen-specific B-cell receptor sequences from the total B-cell repertoire

    No full text
    Advances in next-generation sequencing now allow characterization of the global B-cell receptor (BCR) heavy-chain repertoire at a level that reflects its huge diversity. This technology has provided great insight into the structure of the BCR repertoire and how it responds to specific antigen stimuli. There are numerous potential clinical and research applications of BCR repertoire sequencing, but a major hurdle in the realization of these applications is the identification of the antigen-specific sequences of interest from within the total repertoire. To deconvolute the antigen-specific sequences from total repertoire, either a source of antigen-enriched sequence data is required with which to annotate the total repertoire, or de novo annotation methods must be used based on preconceptions of the features of antigen-specific sequences and their behavior following antigen-specific immune stimulation. We present a review of how these different methods can be applied to identify antigen-specific BCR sequences from the total BCR repertoire

    Studying the antibody repertoire after vaccination: practical applications.

    No full text
    Nearly all licensed vaccines have been developed to confer protection against infectious diseases by stimulating the production of antibodies by B cells, but the nature of a successful antibody response has been difficult to capture. Recent advances in next-generation sequencing (NGS) technology have allowed high-resolution characterization of the antibody repertoire, and of the changes that occur following vaccination. These approaches have yielded important insights into the B cell response, and have raised the possibility of using specific antibody sequences as measures of vaccine immunogenicity. Here, we review recent findings based on antibody repertoire sequencing, and discuss potential applications of these new technologies and of the analyses of the increasing volume of antibody sequence data in the context of vaccine development

    Inferring B cell specificity for vaccines using a Bayesian mixture model

    No full text
    Background Vaccines have greatly reduced the burden of infectious disease, ranking in their impact on global health second only after clean water. Most vaccines confer protection by the production of antibodies with binding affinity for the antigen, which is the main effector function of B cells. This results in short term changes in the B cell receptor (BCR) repertoire when an immune response is launched, and long term changes when immunity is conferred. Analysis of antibodies in serum is usually used to evaluate vaccine response, however this is limited and therefore the investigation of the BCR repertoire provides far more detail for the analysis of vaccine response. Results Here, we introduce a novel Bayesian model to describe the observed distribution of BCR sequences and the pattern of sharing across time and between individuals, with the goal to identify vaccine-specific BCRs. We use data from two studies to assess the model and estimate that we can identify vaccine-specific BCRs with 69% sensitivity. Conclusion Our results demonstrate that statistical modelling can capture patterns associated with vaccine response and identify vaccine specific B cells in a range of different data sets. Additionally, the B cells we identify as vaccine specific show greater levels of sequence similarity than expected, suggesting that there are additional signals of vaccine response, not currently considered, which could improve the identification of vaccine specific B cells

    How B cell receptor repertoire sequencing can be enriched with structural antibody data

    No full text
    Next-generation sequencing of immunoglobulin gene repertoires (Ig-seq) allows the investigation of large-scale antibody dynamics at a sequence level. However, structural information, a crucial descriptor of antibody binding capability is not collected in Ig-seq protocols. Developing systematic relationships between the antibody sequence information gathered from Ig-seq and low-throughput techniques such as X-ray crystallography could radically improve our understanding of antibodies. The mapping of Ig-seq datasets to known antibody structures can indicate structurally, and perhaps functionally, uncharted areas. Furthermore, contrasting naïve and antigenically challenged datasets using structural antibody descriptors should provide insights into antibody maturation. As the number of antibody structures steadily increases and more and more Ig-seq datasets become available, the opportunities that arise from combining the two types of information increase as well. Here we review how these data types enrich one another and show potential for advancing our knowledge of the immune system and improving antibody engineering

    Ejecutoria e hidalguía de los Sotomayores. [Manuscrito]

    Get PDF
    Por Esteban de Garibay. S.l., 1573. Septiembre, 5. Autógrafo de Garibay.Pertenece a la Colección Salazar y Castro de la RA

    Different B cell subpopulations show distinct patterns in their IgH repertoire metrics

    No full text
    Several human B cell subpopulations are recognised in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations

    In-depth assessment of within-individual and inter-individual variation in the B cell receptor repertoire

    No full text
    High-throughput sequencing of the B cell receptor (BCR) repertoire can provide rapid characterization of the B cell response in a wide variety of applications in health, after vaccination and in infectious, inflammatory and immune-driven disease, and is starting to yield clinical applications. However, the interpretation of repertoire data is compromised by a lack of studies to assess the intra and inter-individual variation in the BCR repertoire over time in healthy individuals. We applied a standardized isotype-specific BCR repertoire deep sequencing protocol to a single highly sampled participant, and then evaluated the method in 9 further participants to comprehensively describe such variation. We assessed total repertoire metrics of mutation, diversity, VJ gene usage and isotype subclass usage as well as tracking specific BCR sequence clusters. There was good assay reproducibility (both in PCR amplification and biological replicates), but we detected striking fluctuations in the repertoire over time that we hypothesize may be due to subclinical immune activation. Repertoire properties were unique for each individual, which could partly be explained by a decrease in IgG2 with age, and genetic differences at the immunoglobulin locus. There was a small repertoire of public clusters (0.5, 0.3, and 1.4% of total IgA, IgG, and IgM clusters, respectively), which was enriched for expanded clusters containing sequences with suspected specificity toward antigens that should have been historically encountered by all participants through prior immunization or infection. We thus provide baseline BCR repertoire information that can be used to inform future study design, and aid in interpretation of results from these studies. Furthermore, our results indicate that BCR repertoire studies could be used to track changes in the public repertoire in and between populations that might relate to population immunity against infectious diseases, and identify the characteristics of inflammatory and immunological diseases
    corecore