1,147 research outputs found

    Stellar Disk Truncations: Where do we stand ?

    Full text link
    In the light of several recent developments we revisit the phenomenon of galactic stellar disk truncations. Even 25 years since the first paper on outer breaks in the radial light profiles of spiral galaxies, their origin is still unclear. The two most promising explanations are that these 'outer edges' either trace the maximum angular momentum during the galaxy formation epoch, or are associated with global star formation thresholds. Depending on their true physical nature, these outer edges may represent an improved size characteristic (e.g., as compared to D_25) and might contain fossil evidence imprinted by the galaxy formation and evolutionary history. We will address several observational aspects of disk truncations: their existence, not only in normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed shape, not sharp cut-offs as thought before, but in fact demarcating the start of a region with a steeper exponential distribution of starlight; their possible association with bars; as well as problems related to the line-of-sight integration for edge-on galaxies (the main targets for truncation searches so far). Taken together, these observations currently favour the star-formation threshold model, but more work is necessary to implement the truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars through Masks of Cosmic Dust" conference in South Africa, proceedings published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., & Groess, R; v3 to match published versio

    Bone Morphogenetic Protein 4 Gene Therapy in Mice Inhibits Myeloma Tumor Growth, But Has a Negative Impact on Bone.

    Get PDF
    Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre- and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4-treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human-mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2-/- γC-/-mice. Mice were treated with adeno-associated virus serotype 8 BMP4 vectors (AAV8-BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8-BMP4 mice compared with the AAV8-CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4-treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non-myeloma femurs by μCT. Surprisingly, the AAV8-BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8-CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research

    Efimov effect in quantum magnets

    Full text link
    Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus opens up new avenues for universal few-body physics in condensed matter systems.Comment: 7 pages, 5 figures; published versio

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD

    Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma

    Get PDF
    Human papillomavirus (HPV) infection, and in particularly infection with HPVs 16 and 18, is a central carcinogenic factor in the uterine cervix. We established and optimized a PCR assay for the detection and discrimination of HPV types 16 and 18 in archival formaldehyde fixed and paraffin embedded (FFPE) sections of cervical cancer

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia

    Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11)

    Get PDF
    BACKGROUND: Based on the site of breakpoint in t(9;22) (q34;q11), bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. METHODS: The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. RESULTS: Significant negative associations (p < 0.05) were observed with HLA-A*02 (b2a2, e1a2), -A*68 (b2a2, b3a2, e1a2), -B*14 (b2a2, b3a2, e1a2), -B*15 (b2a2, b3a2), -B*40 (b2a2), -DQB1*0303 (b2a2, b3a2), -DQB1*0603 (b2a2), -DRB1*0401 (e1a2), -DRB1*0701 (b3a2), and -DRB1*1101 (b2a2). CONCLUSIONS: The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22) (q34;q11)-positive leukemia
    corecore