1,453 research outputs found
Observation of Asymmetric Transport in Structures with Active Nonlinearities
A mechanism for asymmetric transport based on the interplay between the
fundamental symmetries of parity (P) and time (T) with nonlinearity is
presented. We experimentally demonstrate and theoretically analyze the
phenomenon using a pair of coupled van der Pol oscillators, as a reference
system, one with anharmonic gain and the other with complementary anharmonic
loss; connected to two transmission lines. An increase of the gain/loss
strength or the number of PT-symmetric nonlinear dimers in a chain, can
increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure
Ligand-based virtual screening using binary kernel discrimination
This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening
Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly
Evaluation of a Bayesian inference network for ligand-based virtual screening
Background
Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity.
Results
Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought.
Conclusion
A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening
Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed
Influenza A H5N1 and HIV co-infection: case report
<p>Abstract</p> <p>Background</p> <p>The role of adaptive immunity in severe influenza is poorly understood. The occurrence of influenza A/H5N1 in a patient with HIV provided a rare opportunity to investigate this.</p> <p>Case Presentation</p> <p>A 30-year-old male was admitted on day 4 of influenza-like-illness with tachycardia, tachypnea, hypoxemia and bilateral pulmonary infiltrates. Influenza A/H5N1 and HIV tests were positive and the patient was treated with Oseltamivir and broad-spectrum antibiotics. Initially his condition improved coinciding with virus clearance by day 6. He clinically deteriorated as of day 10 with fever recrudescence and increasing neutrophil counts and died on day 16. His admission CD4 count was 100/μl and decreased until virus was cleared. CD8 T cells shifted to a CD27<sup>+</sup>CD28<sup>- </sup>phenotype. Plasma chemokine and cytokine levels were similar to those found previously in fatal H5N1.</p> <p>Conclusions</p> <p>The course of H5N1 infection was not notably different from other cases. Virus was cleared despite profound CD4 T cell depletion and aberrant CD8 T cell activation but this may have increased susceptibility to a fatal secondary infection.</p
The Aquatic Symbiosis Genomics Project: probing the evolution of symbiosis across the Tree of Life
We present the Aquatic Symbiosis Genomics Project, a global collaboration to generate high quality genome sequences for a wide range of eukaryotes and their microbial symbionts. Launched under the Symbiosis in Aquatic Systems Initiative of the Gordon and Betty Moore Foundation, the ASG Project brings together researchers from across the globe who hope to use these reference genomes to augment and extend their analyses of the dynamics, mechanisms and environmental importance of symbioses. Applying large-scale, high-throughput sequencing and assembly technologies, the ASG collaboration will assemble and annotate the genomes of 500 symbiotic organisms – both the “hosts” and the microbial symbionts with which they associate. These data will be released openly to benefit all who work on symbioses, from conservation geneticists to those interested in the origin of the eukaryotic cell.
The Aquatic Symbiosis Genomics Project is a worldwide effort to find the genome sequences of a variety of organisms and their microbial partners living in water. Supported by the Gordon and Betty Moore Foundation, this project involves scientists from around the world. The genome sequences will help scientists to better understand how these organisms interact with each other and their environment. The project will use advanced technology to map out the genes of 500 pairs of host organisms and their microbial symbionts. This information will be freely available, helping everyone from researchers studying species conservation to those exploring the beginnings of complex cell life
Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration
Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity
Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) Into Clinical Practice
Objective: Diagnosis is a cornerstone of clinical practice for mental health care providers, yet traditional diagnostic systems have well-known shortcomings, including inadequate reliability, high comorbidity, and marked within-diagnosis heterogeneity. The Hierarchical Taxonomy of Psychopathology (HiTOP) is a data-driven, hierarchically based alternative to traditional classifications that conceptualizes psychopathology as a set of dimensions organized into increasingly broad, transdiagnostic spectra. Prior work has shown that using a dimensional approach improves reliability and validity, but translating a model like HiTOP into a workable system that is useful for health care providers remains a major challenge. / Method: The present work outlines the HiTOP model and describes the core principles to guide its integration into clinical practice. Results: Potential advantages and limitations of the HiTOP model for clinical utility are reviewed, including with respect to case conceptualization and treatment planning. A HiTOP approach to practice is illustrated and contrasted with an approach based on traditional nosology. Common barriers to using HiTOP in real-world health care settings and solutions to these barriers are discussed. / Conclusions: HiTOP represents a viable alternative to classifying mental illness that can be integrated into practice today, although research is needed to further establish its utility
An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades
Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades
- …