52 research outputs found

    Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Get PDF
    Background: Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes

    Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. METHODS: The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. CONCLUSIONS: The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. SIGNIFICANCE: The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food

    Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because the Japanese native cattle <it>Kuchinoshima-Ushi </it>have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed.</p> <p>Results</p> <p>In this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP) information, by whole-genome sequencing using a Genome Analyzer II. A total of 64.2 Gb of sequence was generated, of which 86% of the obtained reads were successfully mapped to the reference sequence (Btau 4.0) with BWA. On an average, 93% of the genome was covered by the reads and the number of mapped reads corresponded to 15.8-fold coverage across the covered region. From these data, we identified 6.3 million SNPs, of which more than 5.5 million (87%) were found to be new. Out of the SNPs annotated in the bovine sequence assembly, 20,432 were found in protein-coding regions containing 11,713 nonsynonymous SNPs in 4,643 genes. Furthermore, phylogenetic analysis using sequence data from 10 genes (more than 10 kbp) showed that <it>Kuchinoshima-Ushi </it>is clearly distinct from European domestic breeds of cattle.</p> <p>Conclusions</p> <p>These results provide a framework for further genetic studies in the <it>Kuchinoshima-Ushi </it>population and research on functions of SNP-containing genes, which would aid in understanding the molecular basis underlying phenotypic variation of economically important traits in cattle and in improving intrinsic defects in domestic cattle breeds.</p
    corecore