4 research outputs found

    The NRG1 gene is frequently silenced by methylation in breast cancers and is a strong candidate for the 8p tumour suppressor gene.

    Get PDF
    Neuregulin-1 (NRG1) is both a candidate oncogene and a candidate tumour suppressor gene. It not only encodes the heregulins and other mitogenic ligands for the ERBB family, but also causes apoptosis in NRG1-expressing cells. We found that most breast cancer cell lines had reduced or undetectable expression of NRG1. This included cell lines that had translocation breaks in the gene. Similarly, expression in cancers was generally comparable to or less than that in various normal breast samples. Many non-expressing cell lines had extensive methylation of the CpG island at the principal transcription start site at exon 2 of NRG1. Expression was reactivated by demethylation. Many tumours also showed methylation, whereas normal mammary epithelial fragments had none. Lower NRG1 expression correlated with higher methylation. Small interfering RNA (siRNA)-mediated depletion of NRG1 increased net proliferation in a normal breast cell line and a breast cancer cell line that expressed NRG1. The short arm of chromosome 8 is frequently lost in epithelial cancers, and NRG1 is the most centromeric gene that is always affected. NRG1 may therefore be the major tumour suppressor gene postulated to be on 8p: it is in the correct location, is antiproliferative and is silenced in many breast cancers

    Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs.</p> <p>Results</p> <p>In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12).</p> <p>Conclusions</p> <p>Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets.</p

    A 1 Mb minimal amplicon at 8p11-12 in breast cancer identifies new candidate oncogenes.

    No full text
    Amplification of 8p11-12 is a well-known alteration in human breast cancers but the driving oncogene has not been identified. We have developed a high-resolution comparative genomic hybridization array covering 8p11-12 and analysed 33 primary breast tumors, 20 primary ovarian tumors and 27 breast cancer cell lines. Expression analysis of the genes in the region was carried out by using real-time quantitative PCR and/or oligo-microarray profiling. In all, 24% (8/33) of the breast tumors, 5% (1/20) of the ovary tumors and 15% (4/27) of the cell lines showed 8p11-12 amplification. We identified a 1 Mb segment of common amplification that excludes previously proposed candidate genes. Some of the amplified genes did not show overexpression, whereas for others, overexpression was not specifically attributable to amplification. The genes FLJ14299, C8orf2, BRF2 and RAB11FIP, map within the 8p11-12 minimal amplicon, two have a putative function consistent with an oncogenic role, these four genes showed a strong correlation between amplification and overexpression and are therefore the best candidate driver oncogenes at 8p12
    corecore