2 research outputs found

    Microsomal epoxide hydrolase gene polymorphism and susceptibility to colon cancer

    Get PDF
    We examined polymorphisms in exons 3 and 4 of microsomal epoxide hydrolase in 101 patients with colon cancer and compared the results with 203 control samples. The frequency of the exon 3 T to C mutation was higher in cancer patients than in controls (odds ratio 3.8; 95% confidence intervals 1.8–8.0). This sequence alteration changes tyrosine residue 113 to histidine and is associated with lower enzyme activity when expressed in vitro. This suggests that putative slow epoxide hydrolase activity may be a risk factor for colon cancer. This appears to be true for both right- and left-sided tumours, but was more apparent for tumours arising distally (odds ratio 4.1; 95% confidence limits 1.9–9.2). By contrast, there was no difference in prevalence of exon 4 A to G transition mutation in cancer vs controls. This mutation changes histidine residue 139 to arginine and produces increased enzyme activity. There was no association between epoxide hydrolase genotype and abnormalities of p53 or Ki- Ras. © 1999 Cancer Research Campaig

    Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-acetyltransferase 1 (NAT1) and 2 (NAT2) are polymorphic isoenzymes responsible for the metabolism of numerous drugs and carcinogens. Acetylation catalyzed by NAT1 and NAT2 are important in metabolic activation of arylamines to electrophilic intermediates that initiate carcinogenesis. Inflammatory bowel diseases (IBD) consist of Crohn's disease (CD) and ulcerative colitis (UC), both are associated with increased colorectal cancer (CRC) risk. We hypothesized that <it>NAT1 </it>and/or <it>NAT2 </it>polymorphisms contribute to the increased cancer evident in IBD.</p> <p>Methods</p> <p>A case control study was performed with 729 Caucasian participants, 123 CRC, 201 CD, 167 UC, 15 IBD dysplasia/cancer and 223 controls. <it>NAT1 </it>and <it>NAT2 </it>genotyping were performed using Taqman based techniques. Eight single nucleotide polymorphisms (SNPs) were characterized for <it>NAT1 </it>and 7 SNPs for <it>NAT2</it>. Haplotype frequencies were estimated using an Expectation-Maximization (EM) method. Disease groups were compared to a control group for the frequencies at each individual SNP separately. The same groups were compared for the frequencies of <it>NAT1 </it>and <it>NAT2 </it>haplotypes and deduced NAT2 phenotypes.</p> <p>Results</p> <p>No statistically significant differences were found for any comparison. Strong linkage disequilibrium was present among both the <it>NAT1 </it>SNPs and the <it>NAT2 </it>SNPs.</p> <p>Conclusion</p> <p>This study did not demonstrate an association between <it>NAT1 </it>and <it>NAT2 </it>polymorphisms and IBD or sporadic CRC, although power calculations indicate this study had sufficient sample size to detect differences in frequency as small as 0.05 to 0.15 depending on SNP or haplotype.</p
    corecore