3,603 research outputs found

    Use of spatiotemporal analysis of laboratory submission data to identify potential outbreaks of new or emerging diseases in cattle in Great Britain

    Get PDF
    BACKGROUND: New and emerging diseases of livestock may impact animal welfare, trade and public health. Early detection of outbreaks can reduce the impact of these diseases by triggering control measures that limit the number of cases that occur. The aim of this study was to investigate whether prospective spatiotemporal methods could be used to identify outbreaks of new and emerging diseases in scanning surveillance data. SaTScan was used to identify clusters of unusually high levels of submissions where a diagnosis could not be reached (DNR) using different probability models and baselines. The clusters detected were subjected to a further selection process to reduce the number of false positives and a more detailed epidemiological analysis to ascertain whether they were likely to represent real outbreaks. RESULTS: 187,925 submissions of clinical material from cattle were made to the Regional Laboratory of the Veterinary Laboratories Agency (VLA) between 2002 and 2007, and the results were stored on the VLA FarmFile database. 16,925 of these were classified as DNRs and included in the analyses. Variation in the number and proportion of DNRs was found between syndromes and regions, so a spatiotemporal analysis for each DNR syndrome was done. Six clusters were identified using the Bernoulli model after applying selection criteria (e.g. size of cluster). The further epidemiological analysis revealed that one of the systemic clusters could plausibly have been due to Johne's disease. The remainder were either due to misclassification or not consistent with a single diagnosis. CONCLUSIONS: Our analyses have demonstrated that spatiotemporal methods can be used to detect clusters of new or emerging diseases, identify clusters of known diseases that may not have been diagnosed and identify misclassification in the data, and highlighted the impact of data quality on the ability to detect outbreaks. Spatiotemporal methods should be used alongside current temporal methods for analysis of scanning surveillance data. These statistical analyses should be followed by further investigation of possible outbreaks to determine whether cases have common features suggesting that these are likely to represent real outbreaks, or whether issues with the collection or processing of information have resulted in false positives

    Field evaluation of a simple fluorescence method for detection of viable Mycobacterium tuberculosis in sputum specimens during treatment follow-up.

    Get PDF
    Simple tuberculosis (TB) treatment monitoring tools are needed. We assessed the performance of fluorescein-diacetate (FDA) smear microscopy for detection of viable Mycobacterium tuberculosis in sputum specimens (n = 288) of TB cases under treatment compared to culture (17.4% culture positivity). FDA sensitivity was moderate (83.7% [95% confidence interval {CI}, 70.3 to 92.6]), and specificity was low (66.1% [59.5 to 72.2]). The good negative predictive value (94.8% [90.1 to 97.8]) and negative likelihood ratio (0.2) suggest using this method to rule out treatment failure in settings without access to culture

    A geometric analysis of hallux valgus: correlation with clinical assessment of severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of plane geometry to the study of bunion deformity may represent an interesting and novel approach in the research field of hallux valgus. For the purpose of contributing to development of a different perspective in the assessment of hallux valgus, this study was conducted with three objectives: a) to determine the position on the intersection point of the perpendicular bisectors of the longitudinal axes of the first metatarsal and proximal phalanx (IP), b) to correlate the location of this point with hallux valgus deformity according to angular measurements and according to visual assessment of the severity carried out by three independent observers, and c) to assess whether this IP correlated with the radius of the first metatarsophalangeal arc circumference.</p> <p>Methods</p> <p>Measurements evaluated were intermetatarsal angle (IMA), hallux valgus angle (HVA), and proximal phalangeal articular angle (PPAA). The Autocad<sup>® </sup>program computed the location of the IP inside or outside of the foot. Three independent observers rated the severity of hallux valgus in photographs using a 100-mm visual analogue scale (VAS).</p> <p>Results</p> <p>Measurements of all angles except PPAA showed significantly lower values when the IP was located out of the foot more distantly and vice versa, significantly higher values for severe deformities in which the IP was found inside the foot (<it>p </it>< 0.001). The IP correlated significantly with VAS scores and with the length of the radius of the circle that included the first metatarsophalangeal arc circumference (<it>p </it>< 0.001)</p> <p>Conclusion</p> <p>The IP is a useful indicator of hallux valgus deformity because correlated significantly with IMA and HVA measurements, VAS scores obtained by visual inspection of the degree of deformity, and location of the center of the first metatarsophalangeal arc circumference.</p

    Elective Open Suprarenal Aneurysm Repair in England from 2000 to 2010 an Observational Study of Hospital Episode Statistics

    Get PDF
    Background: Open surgery is widely used as a benchmark for the results of fenestrated endovascular repair of complex abdominal aortic aneurysms (AAA). However, the existing evidence stems from single-centre experiences, and may not be reproducible in wider practice. National outcomes provide valuable information regarding the safety of suprarenal aneurysm repair. Methods: Demographic and clinical data were extracted from English Hospital Episodes Statistics for patients undergoing elective suprarenal aneurysm repair from 1 April 2000 to 31 March 2010. Thirty-day mortality and five-year survival were analysed by logistic regression and Cox proportional hazards modeling. Results: 793 patients underwent surgery with 14% overall 30-day mortality, which did not improve over the study period. Independent predictors of 30-day mortality included age, renal disease and previous myocardial infarction. 5-year survival was independently reduced by age, renal disease, liver disease, chronic pulmonary disease, and known metastatic solid tumour. There was significant regional variation in both 30-day mortality and 5-year survival after risk-adjustment. Regional differences in outcome were eliminated in a sensitivity analysis for perioperative outcome, conducted by restricting analysis to survivors of the first 30 days after surgery. Conclusions: Elective suprarenal aneurysm repair was associated with considerable mortality and significant regional variation across England. These data provide a benchmark to assess the efficacy of complex endovascular repair of supra-renal aneurysms, though cautious interpretation is required due to the lack of information regarding aneurysm morphology. More detailed study is required, ideally through the mandatory submission of data to a national registry of suprarenal aneurysm repair

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Seabird Modulations of Isotopic Nitrogen on Islands

    Get PDF
    The transport of nutrients by migratory animals across ecosystem boundaries can significantly enrich recipient food webs, thereby shaping the ecosystems’ structure and function. To illustrate the potential role of islands in enabling the transfer of matter across ecosystem boundaries to be gauged, we investigated the influence of seabirds on nitrogen input on islands. Basing our study on four widely differing islands in terms of their biogeography and ecological characteristics, sampled at different spatial and temporal intervals, we analyzed the nitrogen isotopic values of the main terrestrial ecosystem compartments (vascular plants, arthropods, lizards and rodents) and their relationship to seabird values. For each island, the isotopic values of the ecosystem were driven by those of seabirds, which ultimately corresponded to changes in their marine prey. First, terrestrial compartments sampled within seabird colonies were the most enriched in δ15N compared with those collected at various distances outside colonies. Second, isotopic values of the whole terrestrial ecosystems changed over time, reflecting the values of seabirds and their prey, showing a fast turnover throughout the ecosystems. Our results demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystems and trophic webs, but also modulate their isotopic values locally and temporally on these islands. The wealth of experimental possibilities in insular ecosystems justifies greater use of these model systems to further our understanding of the modalities of trans-boundary nutrient transfers
    corecore