113 research outputs found

    Pre-microRNA and Mature microRNA in Human Mitochondria

    Get PDF
    Chantier qualité GAInternational audienceBACKGROUND: Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). CONCLUSIONS/SIGNIFICANCE: The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria

    Dopamine-Induced Conformational Changes in Alpha-Synuclein

    Get PDF
    Background: Oligomerization and aggregation of α-synuclein molecules play a major role in neuronal dysfunction and loss in Parkinson's disease [1]. However, α-synuclein oligomerization and aggregation have mostly been detected indirectly in cells using detergent extraction methods [2], [3], [4]. A number of in vitro studies showed that dopamine can modulate the aggregation of α-synuclein by inhibiting the formation of or by disaggregating amyloid fibrils [5], [6], [7]. Methodology/Principal Findings: Here, we show that α-synuclein adopts a variety of conformations in primary neuronal cultures using fluorescence lifetime imaging microscopy (FLIM). Importantly, we found that dopamine, but not dopamine agonists, induced conformational changes in α-synuclein which could be prevented by blocking dopamine transport into the cell. Dopamine also induced conformational changes in α-synuclein expressed in neuronal cell lines, and these changes were also associated with alterations in oligomeric/aggregated species. Conclusion/Significance: Our results show, for the first time, a direct effect of dopamine on the conformation of α-synuclein in neurons, which may help explain the increased vulnerability of dopaminergic neurons in Parkinson's disease

    DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Get PDF
    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin

    Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats

    Get PDF
    One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage

    Treatment Efficacy, Clinical Utility, and Cost-Effectiveness of Multidisciplinary Biopsychosocial Rehabilitation Treatments for Persistent Low Back Pain: A Systematic Review

    Get PDF
    Study Design: Systematic review. Objectives: To review the current literature on the treatment efficacy, clinical utility, and cost-effectiveness of multidisciplinary biopsychosocial rehabilitation (MBR) for patients suffering from persistent (nonspecific) lower back pain (LBP) in relation to pain intensity, disability, health-related quality of life, and work ability/sick leave. Methods: We carried out a systematic search of Web of Science, Cochrane Library, PubMed Central, EMBASE, and PsycINFO for English- and German-language literature published between January 2010 and July 2017. Study selection consisted of exclusion and inclusion phases. After screening for duplication, studies were excluded on the basis of criteria covering study design, number of participants, language of publication, and provision of information about the intervention. All the remaining articles dealing with the efficacy, utility, or cost-effectiveness of intensive (more than 25 hours per week) MBR encompassing at least 3 health domains and cognitive behavioral therapy–based psychological education were included. Results: The search retrieved 1199 publications of which 1116 were duplicates or met the exclusion criteria. Seventy of the remaining 83 articles did not meet the inclusion criteria; thus 13 studies were reviewed. All studies reporting changes in pain intensity or disability over 12 months after MBR reported moderate effect sizes and/or p-values for both outcomes. The effects on health-related quality of life were mixed, but MBR substantially reduced costs. Overall MBR produced an enduring improvement in work ability despite controversy and variable results. Conclusions: MBR is an effective treatment for nonspecific LBP, but there is room for improvement in cost-effectiveness and impact on sick leave, where the evidence was less compelling

    Mesenchymal Stem Cell Graft Improves Recovery after Spinal Cord Injury in Adult Rats through Neurotrophic and Pro-Angiogenic Actions

    Get PDF
    Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
    corecore