53 research outputs found

    Selective Hyper-responsiveness of the Interferon System in Major Depressive Disorders and Depression Induced by Interferon Therapy

    Get PDF
    Though an important percentage of patients with chronic hepatitis C virus (HCV) undergoing interferon (IFN) therapy develop depressive symptoms, the role of the IFN system in the pathogenesis of depressive disorders is not well understood.50 patients with HCV infection were treated with standard combination therapy (pegylated IFN-α2a/ribavirin). IFN-induced gene expression was analyzed to identify genes which are differentially regulated in patients with or without IFN-induced depression. For validation, PBMC from 22 psychiatric patients with a severe depressive episode (SDE) and 11 controls were cultivated in vitro with pegylated IFN-α2a and gene expression was analyzed.IFN-induced depression in HCV patients was associated with selective upregulation of 15 genes, including 6 genes that were previously described to be relevant for major depressive disorders or neuronal development. In addition, increased endogenous IFN-production and selective hyper-responsiveness of these genes to IFN stimulation were observed in SDE patients.Our data suggest that selective hyper-responsiveness to exogenous (IFN therapy) or endogenous (depressive disorders) type I IFNs may lead to the development of depressive symptoms. These data could lead to the discovery of novel therapeutic approaches to treat IFN-induced and major depressive disorders

    Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection. METHODOLOGY: Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed. PRINCIPAL FINDINGS: HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05). CONCLUSIONS: HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    <i>Fascin-1</i> promoter activity is regulated by CREB and the aryl hydrocarbon receptor in human carcinoma cells

    Get PDF
    BACKGROUND: Fascin is an actin-bundling protein that is absent from most normal epithelia yet is upregulated in multiple forms of human carcinoma, where its expression correlates clinically with a poor prognosis. How fascin-1 transcription is activated in carcinoma cells is largely unknown, although the hypothesis of regulation by β-catenin signaling has received attention. The question is important because of the clinical significance of fascin expression in human carcinomas. METHODOLOGY/PRINCIPAL FINDINGS: Through comparative genomics we made an unbiased analysis of the DNA sequence of the fascin-1 promoter region from six mammalian species. We identified two regions in which highly conserved motifs are concentrated. Luciferase promoter reporter assays for the human fascin-1 promoter were carried out in fascin-positive and -negative human breast and colon carcinoma cells, and in human dermal fibroblasts that are constitutively fascin-positive. In all fascin-positive cells, the region −219/+114 that contains multiple highly conserved motifs had strong transcriptional activity. The region −2953/−1582 appeared to contain repressor activity. By examining the effects of single or multiple point mutations of conserved motifs within the −219/+114 region on transcriptional reporter activity, we identified for the first time that the conserved CREB and AhR binding motifs are major determinants of transcriptional activity in human colon carcinoma cells. Chromatin immunoprecipitations for CREB, AhR or β-catenin from extracts from fascin-positive or -negative human colon carcinoma cells identified that CREB and AhR specifically associate with the −219/+114 region of the FSCN1 promoter in fascin-positive colon carcinoma cells. An association of β-catenin was not specific to fascin-positive cells. CONCLUSION: Upregulation of fascin-1 in aggressive human carcinomas appears to have a multi-factorial basis. The data identify novel roles for CREB and AhR as major, specific regulators of FSCN-1 transcription in human carcinoma cells but do not support the hypothesis that β-catenin signaling has a central role

    The influence of hepatic function on prostate cancer outcomes after radical prostatectomy.

    No full text
    Prostate growth is dependent on circulating androgens, which can be influenced by hepatic function. Liver disease has been suggested to influence prostate cancer (CaP) incidence. However, the effect of hepatic function on CaP outcomes has not been investigated. A total of 1181 patients who underwent radical prostatectomy (RP) between 1988 and 2008 at four Veterans Affairs hospitals that comprise the Shared Equal Access Regional Cancer Hospital database and had available liver function test (LFT) data were included in the study. Independent associations of LFTs with unfavorable pathological features and biochemical recurrence were determined using logistic and Cox regression analyses. Serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were elevated in 8.2 and 4.4% of patients, respectively. After controlling for CaP features, logistic regression revealed a significant association between SGOT levels and pathological Gleason sum > or =7(4+3) cancer (odds ratio=2.12; 95% confidence interval=1.11-4.05; P=0.02). Mild hepatic dysfunction was significantly associated with adverse CaP grade, but was not significantly associated with other adverse pathological features or biochemical recurrence in a cohort of men undergoing RP. The effect of moderate-to-severe liver disease on disease outcomes in CaP patients managed non-surgically remains to be investigated
    • …
    corecore