24 research outputs found

    Whispering to the Deaf: Communication by a Frog without External Vocal Sac or Tympanum in Noisy Environments

    Get PDF
    Atelopus franciscus is a diurnal bufonid frog that lives in South-American tropical rain forests. As in many other frogs, males produce calls to defend their territories and attract females. However, this species is a so-called “earless” frog lacking an external tympanum and is thus anatomically deaf. Moreover, A. franciscus has no external vocal sac and lives in a sound constraining environment along river banks where it competes with other calling frogs. Despite these constraints, male A. franciscus reply acoustically to the calls of conspecifics in the field. To resolve this apparent paradox, we studied the vocal apparatus and middle-ear, analysed signal content of the calls, examined sound and signal content propagation in its natural habitat, and performed playback experiments. We show that A. franciscus males can produce only low intensity calls that propagate a short distance (<8 m) as a result of the lack of an external vocal sac. The species-specific coding of the signal is based on the pulse duration, providing a simple coding that is efficient as it allows discrimination from calls of sympatric frogs. Moreover, the signal is redundant and consequently adapted to noisy environments. As such a coding system can be efficient only at short-range, territory holders established themselves at short distances from each other. Finally, we show that the middle-ear of A. franciscus does not present any particular adaptations to compensate for the lack of an external tympanum, suggesting the existence of extra-tympanic pathways for sound propagation

    A giant exoplanet orbiting a very-low-mass star challenges planet formation models

    Get PDF
    Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought

    CARMENES: high-resolution spectra and precise radial velocities in the red and infrared

    Get PDF
    SPIE Astronomical Telescopes + Instrumentation (2018, Austin, Texas, United States

    Evidence of a (1d(5/2))(2) component to the Be-12 ground state

    Get PDF
    Data have been obtained on exclusive single neutron knockout cross sections from 12Be to study its ground state structure. The cross sections for the production of 11Be in its ground state (1/2 +) and first excited state (0.32 MeV, 1/2 -) have previously been measured, indicating a strong (2s 1 2) 2 component to the 12Be ground state. In the present experiment, performed at the GANIL laboratory, cross sections for the first (0.32 MeV, 1/2 -) and second (1.78 MeV, 5/2 +, unbound) excited states in 11Be were measured, which gives information on the admixture of (1p 1 2) 2 and (1d 5 2) 2 components in the ground state of 12Be. A fragmentation beam of 12Be of ∼10000 pps (95% pure) was incident on a carbon target at 41 MeV/u. The beam particles were tracked onto the target, and their energies were measured event-by-event. The beam-like residues were measured in a position sensitive telescope mounted at zero degrees, and neutrons were measured in the DéMoN array. The 1/2 - state of 11Be was identified by measuring coincident 320 keV γ-rays, using four NaI detectors. Full kinematic reconstruction of unbound states in 11Be was performed using coincident neutrons and 10Be ions. Detailed simulations were performed in order to interpret the data, and spectroscopic factors were calculated, using preliminary single particle removal cross sections calculated using a Glauber model. © 2005 American Institute of Physics

    Evidence Of A (1)2 Component To The 12Be Ground State

    Get PDF
    International audienceData have been obtained on exclusive single neutron knockout cross sections from 12Be to study its ground state structure. The cross sections for the production of 11Be in its ground state (1/2+) and first excited state (0.32 MeV, 1/2−) have previously been measured, indicating a strong (2s½)2 component to the 12Be ground state. In the present experiment, performed at the GANIL laboratory, cross sections for the first (0.32 MeV, 1/2−) and second (1.78 MeV, 5/2+, unbound) excited states in 11Be were measured, which gives information on the admixture of (1p½)2 and (1math)2 components in the ground state of 12Be. A fragmentation beam of 12Be of ∼10000 pps (95% pure) was incident on a carbon target at 41 MeV/u. The beam particles were tracked onto the target, and their energies were measured event‐by‐event. The beam‐like residues were measured in a position sensitive telescope mounted at zero degrees, and neutrons were measured in the DéMoN array. The 1/2− state of 11Be was identified by measuring coincident 320 keV γ‐rays, using four NaI detectors. Full kinematic reconstruction of unbound states in 11Be was performed using coincident neutrons and 10Be ions. Detailed simulations were performed in order to interpret the data, and spectroscopic factors were calculated, using preliminary single particle removal cross sections calculated using a Glauber model. © 2005 American Institute of Physic

    Structure around the island of inversion with single-neutron knockout reactions at GANIL

    No full text
    The nuclear structure of the 31Mg nucleus has been studied with the single-neutron knockout reaction. We report on the preliminary results of an experiment performed with the EXOGAM array coupled, for the first time, to the SPEG spectrometer at GANIL. We present a provisional result for the inclusive single-neutron knockout cross section of σinc= 90(5) mb. Preliminary exclusive cross sections for the measured bound states, including the ground state, are also presented. Finally, preliminary longitudinal momentum distributions for the ground state and first excited state are also shown. These results are compared to Monte Carlo Shell-Model calculations in the sd-pf region
    corecore