14 research outputs found

    Structural Biology by NMR: Structure, Dynamics, and Interactions

    Get PDF
    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data

    Solution structure of a pleckstrin-homology domain

    No full text
    PLECKSTRIN1, the major protein kinase C substrate of platelets, contains domains of about 100 amino acids at the amino and carboxy termini that have been found in a number of proteins, including serine/threonine kinases, GTPase-activating proteins, phospholipases and cytoskeletal proteins2–5. These conserved sequences, termed pleckstrin-homology (PH) domains, are thought to be involved in signal transduction. But the details of the function and binding partners of the PH domains have not been characterized. Here we report the solution structure of the N-terminal pleckstrin-homology domain of pleckstrin determined using heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. The structure consists of an up-and-down β-barrel of seven antiparallel β-strands and a C-terminal amphiphilic α-helix that caps one end of the barrel. The overall topology of the domain is similar to that of the retinol-binding protein family of structures6–10.Accepted versio

    NMR-based modeling and refinement of protein 3D structures

    No full text
    NMR is a well-established method to characterize the structure and dynamics of biomolecules in solution. High-quality structures can now be produced thanks to both experimental advances and computational developments that incorporate new NMR parameters and improved protocols and force fields in the structure calculation and refinement process. In this chapter, we give a short overview of the various types of NMR data that can provide structural information, and then focus on the structure calculation methodology itself. We discuss and illustrate with tutorial examples “classical” structure calculation, refinement, and structure validation approaches
    corecore