50 research outputs found
Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond
Cardiovascular disease remains the leading cause of mortality, morbidity and disability in the developed world, predominantly affecting the adult population. In the early 1990s coronary heart disease (CHD) was established as affecting one in two men and one in three women by the age of forty. Despite the dramatic progress in the field of cardiovascular medicine in terms of diagnosis and treatment of heart disease, modest improvements have only been achieved when the reduction of cardiovascular mortality and morbidity indices are assessed. To better understand coronary atherosclerosis, new imaging modalities have been introduced. These novel imaging modalities have been used in two ways: (1) for the characterization of plaque types; (2) for the assessment of the progression and regression of tissue types. These two aspects will be discussed in this review
Troponin elevation in acute ischemic stroke (TRELAS) - protocol of a prospective observational trial
<p>Abstract</p> <p>Background</p> <p>Levels of the cardiac muscle regulatory protein troponin T (cTnT) are frequently elevated in patients with acute ischemic stroke and elevated cTnT predicts poor outcome and mortality. The pathomechanism of troponin release may relate to co-morbid coronary artery disease and myocardial ischemia or, alternatively, to neurogenic cardiac damage due to autonomic activation after acute ischemic stroke. Therefore, there is uncertainty about how acute ischemic stroke patients with increased cTnT levels should be managed regarding diagnostic and therapeutic workup.</p> <p>Methods/Design</p> <p>The primary objective of the prospective observational trial TRELAS (TRoponin ELevation in Acute ischemic Stroke) is to investigate the frequency and underlying pathomechanism of cTnT elevation in acute ischemic stroke patients in order to give guidance for clinical practice. All consecutive patients with acute ischemic stroke admitted within 72 hours after symptom onset to the Department of Neurology at the Campus Benjamin Franklin of the University Hospital Charité will be screened for cTnT elevations (i.e. >= 0.05 μg/l) on admission and again on the following day. Patients with increased cTnT will undergo coronary angiography within 72 hours. Diagnostic findings of coronary angiograms will be compared with age- and gender-matched patients presenting with Non-ST-Elevation myocardial infarction to the Department of Cardiology. The primary endpoint of the study will be the occurrence of culprit lesions in the coronary angiogram indicating underlying co-morbid obstructive coronary artery disease. Secondary endpoints will be the localization of stroke in the cerebral imaging and left ventriculographic findings of wall motion abnormalities suggestive of stroke-induced global cardiac dysfunction.</p> <p>Discussion</p> <p>TRELAS will prospectively determine the frequency and possible etiology of troponin elevation in a large cohort of ischemic stroke patients. The findings are expected to contribute to clarify pathophysiologic concepts of co-morbid cardiac damage in ischemic stroke patients and also to provide a basis for clinical recommendations for cardiac workup of such patients.</p> <p>Trial registration</p> <p>clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01263964">NCT01263964</a></p
MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199
Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias