101 research outputs found
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride
Graphene has demonstrated great promise for future electronics technology as
well as fundamental physics applications because of its linear energy-momentum
dispersion relations which cross at the Dirac point. However, accessing the
physics of the low density region at the Dirac point has been difficult because
of the presence of disorder which leaves the graphene with local microscopic
electron and hole puddles, resulting in a finite density of carriers even at
the charge neutrality point. Efforts have been made to reduce the disorder by
suspending graphene, leading to fabrication challenges and delicate devices
which make local spectroscopic measurements difficult. Recently, it has been
shown that placing graphene on hexagonal boron nitride (hBN) yields improved
device performance. In this letter, we use scanning tunneling microscopy to
show that graphene conforms to hBN, as evidenced by the presence of Moire
patterns in the topographic images. However, contrary to recent predictions,
this conformation does not lead to a sizable band gap due to the misalignment
of the lattices. Moreover, local spectroscopy measurements demonstrate that the
electron-hole charge fluctuations are reduced by two orders of magnitude as
compared to those on silicon oxide. This leads to charge fluctuations which are
as small as in suspended graphene, opening up Dirac point physics to more
diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201
Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating
Graphene is a promising material for ultrafast and broadband photodetection.
Earlier studies addressed the general operation of graphene-based
photo-thermoelectric devices, and the switching speed, which is limited by the
charge carrier cooling time, on the order of picoseconds. However, the
generation of the photovoltage could occur at a much faster time scale, as it
is associated with the carrier heating time. Here, we measure the photovoltage
generation time and find it to be faster than 50 femtoseconds. As a
proof-of-principle application of this ultrafast photodetector, we use graphene
to directly measure, electrically, the pulse duration of a sub-50 femtosecond
laser pulse. The observation that carrier heating is ultrafast suggests that
energy from absorbed photons can be efficiently transferred to carrier heat. To
study this, we examine the spectral response and find a constant spectral
responsivity between 500 and 1500 nm. This is consistent with efficient
electron heating. These results are promising for ultrafast femtosecond and
broadband photodetector applications.Comment: 6 pages, 4 figure
Giant intrinsic photoresponse in pristine graphene
When the Fermi level matches the Dirac point in graphene, the reduced charge
screening can dramatically enhance electron-electron (e-e) scattering to
produce a strongly interacting Dirac liquid. While the dominance of e-e
scattering already leads to novel behaviors, such as electron hydrodynamic
flow, further exotic phenomena have been predicted to arise specifically from
the unique kinematics of e-e scattering in massless Dirac systems. Here, we use
optoelectronic probes, which are highly sensitive to the kinematics of electron
scattering, to uncover a giant intrinsic photocurrent response in pristine
graphene. This photocurrent emerges exclusively at the charge neutrality point
and vanishes abruptly at non-zero charge densities. Moreover, it is observed at
places with broken reflection symmetry, and it is selectively enhanced at free
graphene edges with sharp bends. Our findings reveal that the photocurrent
relaxation is strongly suppressed by a drastic change of fast photocarrier
kinematics in graphene when its Fermi level matches the Dirac point. The
emergence of robust photocurrents in neutral Dirac materials promises new
energy-harvesting functionalities and highlights intriguing electron dynamics
in the optoelectronic response of Dirac fluids.Comment: Originally submitted versio
What lies between market and hierarchy? Insights from internalization theory and global value chain theory
In this paper, we suggest that internalization theory might be extended by incorporating complementary insights from GVC theory. More specifically, we argue that internalization theory can explain why lead firms might wish to externalize selected activities, but that it is largely silent on the mechanisms by which those lead firms might exercise control over the resultant externalized relationships with their GVC partners. We advance an explanation linking the choice of control mechanism to two factors: power asymmetries between the lead firms and their GVC partners, and the degree of codifiability of the information to be exchanged in the relationship
Network capitalism and the role of strategy, contracts and performance expectations for Asia-Pacific innovation partnerships
© Springer Nature Singapore Pte Ltd. 2018. With the growth of emerging economies in Asia-Pacific over the last three decades collaboration with the aim of innovation between firms within and with partners outside the region have developed substantially. Not always have such partnerships fulfilled their anticipated strategic objectives. The literature suggests that the nature of market arrangements and the role of government within that system play a role, but also innate contracting practices and governance of innovation partnerships are related. Yet, our understanding about the specific relationships between these factors and the emerging partnership innovation culture that facilitates joint business activities in an Asia-Pacific context remains vague. In this conceptual chapter we suggest how characteristics of so called network capitalism in conjunction with the nature of contractual agreements between partners, the alignment of their innovation objectives and the ambiguity inherent in their mutual contributions to the partnership can be interpreted as indicators of joint innovation culture. However, while innovation partnerships generally may result to be bureaucratic, market, clan, or adhocracy, we discuss how in an Asia Pacific context, innovation partnerships are limited by the extent of codification and diffusion of information and the social embeddedness of economic transactions
Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology
Сбалансированная система показателей машиностроительного комплекса Украины
В статье доказано, что сбалансированная система показателей - это управленческая система. Она помогает перевести стратегию машиностроительного комплекса Украины в набор действий, необходимых для ее реализации
- …