18 research outputs found
Thyroid Disruption by Di-n-Butyl Phthalate (DBP) and Mono-n-Butyl Phthalate (MBP) in Xenopus laevis
BACKGROUND: Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRΞ²), retinoid X receptor gamma (RXRΞ³), alpha and beta subunits of thyroid-stimulating hormone (TSHΞ± and TSHΞ²) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRΞ² in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment
Targeting HSP90 for cancer therapy
Heat-shock proteins (HSPs) are molecular chaperones that regulate protein folding to ensure correct conformation and translocation and to avoid protein aggregation. Heat-shock proteins are increased in many solid tumours and haematological malignancies. Many oncogenic proteins responsible for the transformation of cells to cancerous forms are client proteins of HSP90. Targeting HSP90 with chemical inhibitors would degrade these oncogenic proteins, and thus serve as useful anticancer agents. This review provides an overview of the HSP chaperone machinery and the structure and function of HSP90. We also highlight the key oncogenic proteins that are regulated by HSP90 and describe how inhibition of HSP90 could alter the activity of multiple signalling proteins, receptors and transcriptional factors implicated in carcinogenesis