63 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.</p> <p>Methods</p> <p>We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis.</p> <p>Results</p> <p>Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits.</p> <p>Conclusions</p> <p>Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.</p

    Identification and Characterization of Microsporidia from Fecal Samples of HIV-Positive Patients from Lagos, Nigeria

    Get PDF
    BACKGROUND: Microsporidia are obligate intracellular parasites that infect a broad range of vertebrates and invertebrates. They have been increasingly recognized as human pathogens in AIDS patients, mainly associated with a life-threatening chronic diarrhea and systemic disease. However, to date the global epidemiology of human microsporidiosis is poorly understood, and recent data suggest that the incidence of these pathogens is much higher than previously reported and may represent a neglected etiological agent of more common diseases indeed in immunocompetent individuals. To contribute to the knowledge of microsporidia molecular epidemiology in HIV-positive patients in Nigeria, the authors tested stool samples proceeding from patients with and without diarrhea. METHODOLOGY/PRINCIPAL FINDINGS: Stool samples from 193 HIV-positive patients with and without diarrhea (67 and 126 respectively) from Lagos (Nigeria) were investigated for the presence of microsporidia and Cryptosporidium using Weber's Chromotrope-based stain, Kinyoun stain, IFAT and PCR. The Weber stain showed 45 fecal samples (23.3%) with characteristic microsporidia spores, and a significant association of microsporidia with diarrhea was observed (O.R. = 18.2; CI: 95%). A similar result was obtained using Kinyoun stain, showing 44 (31,8%) positive samples with structures morphologically compatible with Cryptosporidium sp, 14 (31.8%) of them with infection mixed with microsporidia. The characterization of microsporidia species by IFAT and PCR allowed identification of Enterocytozoon bieneusi, Encephalitozoon intestinalis and E. cuniculi in 5, 2 and 1 samples respectively. The partial sequencing of the ITS region of the rRNA genes showed that the three isolates of E.bieneusi studied are included in Group I, one of which bears the genotype B. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first report of microsporidia characterization in fecal samples from HIV-positive patients from Lagos, Nigeria. These results focus attention on the need to include microsporidial diagnosis in the management of HIV/AIDS infection in Nigeria, at the very least when other more common pathogens have not been detected

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • 

    corecore