946 research outputs found

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∌20/∌16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    Plasma Zinc But Not the Exchangeable Zinc Pool Size Differs Between Young and Older Korean Women

    Get PDF
    This study was done to determine the effect of age on zinc metabolism and status among healthy Korean women. Measures of zinc metabolism and status were measured in eight young women (22–24 years) and seven elderly women (66–75 years) consuming a typical Korean diet. Oral and intravenous tracers highly enriched in 67Zn and 70Zn were administered simultaneously. Multiple plasma, 24-h urines, and fecal samples were collected after isotope administration. In the young women, additional plasma were collected to determine zinc kinetics using a seven-compartmental model. Exchangeable Zinc Pool (EZP) was estimated by Miller’s method. Plasma zinc concentrations were higher in older women than younger women (p < 0.05). EZP and urinary zinc tended to be higher in older women than younger women. Fractional and total zinc absorption and endogenous fecal zinc losses did not differ between young and older women. A comparison of the zinc kinetics of the Korean and American women showed no differences in plasma or EZP zinc parameters. However, absorbed zinc and zinc flux to slowly turning over tissues (Q7) were lower in Korean women than that of Americans (p < 0.01) suggesting the total body zinc content of Korean women is lower than that of American women

    Imaging response assessment for CNS germ cell tumours: consensus recommendations from the European Society for Paediatric Oncology Brain Tumour Group and North American Children's Oncology Group

    Get PDF
    Homogeneous and common objective disease assessments and standardised response criteria are important for better international clinical trials for CNS germ cell tumours. Currently, European protocols differ from those of North America (the USA and Canada) in terms of criteria to assess radiological disease response. An international working group of the European Society for Paediatric Oncology Brain Tumour Group and North American Children's Oncology Group was therefore established to review existing literature and current practices, identify major challenges regarding imaging assessment, and develop consensus recommendations for imaging response assessment for patients with CNS germ cell tumours. New clinical imaging standards were defined for the most common sites of CNS germ cell tumour and for the definition of locoregional extension. These new standards will allow the evaluation of response to therapy in patients with CNS germ cell tumours to be more consistent, and facilitate direct comparison of treatment outcomes across international studies

    Behavioral Sequence Analysis Reveals a Novel Role for ß2* Nicotinic Receptors in Exploration

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and modulate neuronal function in most mammalian brain structures. The contribution of defined nAChR subunits to a specific behavior is thus difficult to assess. Mice deleted for ß2-containing nAChRs (ß2−/−) have been shown to be hyperactive in an open-field paradigm, without determining the origin of this hyperactivity. We here develop a quantitative description of mouse behavior in the open field based upon first order Markov and variable length Markov chain analysis focusing on the time-organized sequence that behaviors are composed of. This description reveals that this hyperactivity is the consequence of the absence of specific inactive states or “stops”. These stops are associated with a scanning of the environment in wild-type mice (WT), and they affect the way that animals organize their sequence of behaviors when compared with stops without scanning. They characterize a specific “decision moment” that is reduced in ß2−/− mutant mice, suggesting an important role of ß2-nAChRs in the strategy used by animals to explore an environment and collect information in order to organize their behavior. This integrated analysis of the displacement of an animal in a simple environment offers new insights, specifically into the contribution of nAChRs to higher brain functions and more generally into the principles that organize sequences of behaviors in animals

    Distinct Changes in cAMP and Extracellular Signal-Regulated Protein Kinase Signalling in L-DOPA-Induced Dyskinesia

    Get PDF
    Background: In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP- protein kinase A and of the Rasextracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia. Methodology/Results: We here studied, in the gold-standard non-human primate model of Parkinson’s disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment. Conclusion: Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure

    Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes

    Get PDF
    Exosomes are nano-sized extracellular vesicles, released from various cells, which can stimulate or repress responses in targets cells. We recently reported that cultured cardiomyocytes are able to release exosomes and that they, in turn, are involved in facilitating events in target cells by alteration of gene expression. We investigated whether external stimuli of the cardiomyocyte might influence the transcriptional content of the released exosomes.Exosomes were isolated from media collected from cultured cardiomyocytes (HL-1) with or without growth factor treatment (TGF-&#x03B2;2 and PDGF-BB), with a series of differential centrifugations, including preparative ultracentrifugation and separation with a sucrose gradient. The exosomes were characterized with dynamic light scattering (DLS), electron microscopy (EM) and Western blot and analyzed with Illumina whole genome microarray gene expression.The exosomes were rounded in shape and had an average size of 50&#x2013;90 nm in diameter with no difference between treatment groups. Analysis of the mRNA content in repeated experiments conclusively revealed 505 transcripts in the control group, 562 in the TGF-&#x03B2;2-treated group and 300 in the PDGF-BB-treated group. Common transcripts (217) were found in all 3 groups.We show that the mode of stimulation of parental cells affects the characteristics of exosomes released. Hence, there is a difference in mRNA content between exosomes derived from cultured cardiomyocytes stimulated, or not stimulated, with growth factors. We also conclude that all exosomes contain a basic package consisting of ribosomal transcripts and mRNAs coding for proteins with functions within the energy supply system. To access the supplementary material to this article, please see Supplementary files under Article Tools online

    Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    Get PDF
    International audienceBackground: Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding: Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance: A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation
    • 

    corecore