24 research outputs found

    Detecting and quantifying stress granules in tissues of multicellular organisms with the Obj.MPP analysis tool

    Get PDF
    International audienceStress Granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts. Although genetically tractable multicellular organisms have been key in identifying modifiers of RNP aggregate toxicity, in vivo analysis of SG properties and regulation has lagged behind, largely due to the difficulty of detecting SG from images of intact tissues. Here, we describe the object detector software Obj.MPP and show how it overcomes the limits of classical object analyzers to extract the properties of SGs from wide-field and confocal images of respectively C. elegans and Drosophila tissues. We demonstrate that Obj.MPP enables the identification of genes modulating the assembly of endogenous and pathological SGs, and thus that it will be useful in the context of future genetic screens and in vivo studies. This article is protected by copyright. All rights reserved

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Urinary Neutrophil Gelatinase-Associated Lipocalin (uNGAL) and contrast-induced acute kidney injury after coronary angiogram

    Full text link
    QUESTIONS UNDER STUDY: Diagnosis of acute kidney injury (AKI) relies on measurement of serum creatinine (SCr). SCr is a late marker of impaired renal function. Urinary Neutrophil Gelatinase-Associated Lipocalin (uNGAL) has given encouraging results for an early and sensitive detection of AKI. This cohort study was conducted (1) to assess the value of uNGAL as early marker of contrast-induced AKI (CI-AKI) in unselected patients undergoing percutaneous coronary procedure (PCP) and (2) to investigate whether uNGAL levels correlate with the volume of contrast medium (CM) used during the procedure. METHODS: We enrolled 244 consecutive adult patients undergoing PCP done with the low-osmolar CM Iomeprolum (median volume of CM 122 [88–168] ml per procedure). uNGAL was measured at its peak with a standardised clinical laboratory platform (ARCHITECT uNGAL assay, Abbott). RESULTS: Overall, the post-PCP uNGAL levels were extremely low in our cohort with a median value of 7.7 [4.0–14.5] ng/ml (N ≤132 ng/ml). Twenty-five (10%) patients developed CI-AKI according to the classical diagnostic criteria (≥25% or ≥44.2 µmol/l increase in SCr) and 8 (3.3%) patients according to the AKIN criteria. Regardless of the definition considered, uNGAL levels did not significantly differ in patients with or without CI-AKI. Similarly, we found no significant correlation between the volume of CM used and the post-PCP uNGAL levels (r = –0.11). CONCLUSIONS: In a large cohort of unselected adult patients, uNGAL measured four to six hours after PCP was ineffective to predict the risk of CI-AKI and did not correlate with the volume of CM used during the procedure
    corecore