18 research outputs found

    The effect of AstymÂź Therapy on muscle strength: a blinded, randomized, clinically controlled trial

    No full text
    BACKGROUND: Astym(Âź) therapy is a manual therapy intervention used to stimulate tissue healing, decrease pain, improve mobility, and improve muscle performance associated with musculoskeletal pathology. The purpose of this study was to determine if Astym therapy administered to the lower extremity would result in an immediate change of maximal force output during a unilateral isometric squat test among individuals with a lower extremity injury. METHODS: Forty-five subjects (14 males; 31females) between 18 and 65 years of age were randomized into 3 treatment groups: 1) Control group – received no treatment 2) Placebo group – received a sham Astym treatment 3) Astym therapy group– received Astym therapy to the lower extremity. A baseline measure of maximal force output (pre-test) during a unilateral isometric squat was performed. The subjects then received the designated treatment intervention. Immediately following the treatment intervention, maximal force output (post-test) was retested using identical testing procedures by an investigator who was blinded to the treatment intervention received by the subjects. The percent change of maximal force output from pre-test to post-test measures was compared using a one-way analysis of variance. A Tukey’s post-hoc analysis determined the statistical differences between the groups. RESULTS: The treatment intervention had a significant effect on the percent change of maximal force output [F(2,42) = 7.91, p = 0.001]. Tukey’s post hoc analysis demonstrated that the percent change of maximal force output was significantly greater in the Astym group (15 ± 18 % change of Newtons) compared to the placebo (−6 ± 11 % change of Newtons; p = 0.0001) and control (−1 ± 17 % change of Newtons; p = 0.0014) groups. No significant difference (p = 0.68) was noted between the control and placebo groups. CONCLUSIONS: Astym therapy to the involved lower extremity increased maximum force output during an isometric squat test immediately following treatment. The results of this study suggest that Astym therapy can immediately improve muscle performance (maximal force output) for patients presenting with muscular weakness caused by a lower extremity musculoskeletal injury. TRIAL REGISTRATION: Clinicaltrials.gov NCT02349230. Registered 23 January 2015

    Patterned magnetic thin films for ultra high density recording

    Get PDF
    The areal bit density of magnetic disk recording has increased since 1990 60% per year and even in the last years 100%. Extrapolation of these rates leads to recording parameters not likely to be achieved without changes in the present way of storing hard disk data. One of the possible solutions is the development of so-called patterned magnetic media. Such media will also shift the superparamagnetic limit positively in comparison with the present thin film media. Theoretically, a bit density in the order of Tbits/in 2 may be possible by using this so-called discrete magnetic recording scheme. The patterned structures presented in this paper consist of a regular two-dimensional array of single domain dots with large uniaxial magnetic anisotropy and have been prepared from CoNi/Pt multilayers with strong intergranular exchange coupling and large perpendicular magnetic anisotropy. For the preparation of the patterned media, a patterning process based on Laser Interference Lithography method (LIL) and Ion Beam Etching has been developed. This technology provides the possibility to pattern 2-D arrays of submicron dots smaller than the critical size for the transition from multi to single domain. The smallest prepared dot sizes are 60 nm with a center-to-center dot spacing of 200 nm and thickness of 30 nm. The magnetic characterization of these dots showed that they are single domain with reasonable coercivity and good thermal stability. Micromagnetic simulations show that the single domain state is the lowest energy state for dots with a diameter below 75nm, which confirms the experimental observations
    corecore