206 research outputs found
Spin Seebeck insulator
Thermoelectric generation is an essential function of future energy-saving
technologies. However, this generation has been an exclusive feature of
electric conductors, a situation which inflicts a heavy toll on its
application; a conduction electron often becomes a nuisance in thermal design
of devices. Here we report electric-voltage generation from heat flowing in an
insulator. We reveal that, despite the absence of conduction electrons, a
magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached
Pt films transform this spin voltage into electric voltage by the inverse spin
Hall effect. The experimental results require us to introduce thermally
activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings
extend the range of potential materials for thermoelectric applications and
provide a crucial piece of information for understanding the physics of the
spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information
Teosinte Inflorescence Phytolith Assemblages Mirror Zea Taxonomy
Molecular DNA analyses of the New World grass (Poaceae) genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis) of maize (Zea mays ssp. mays). However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples
Spin Caloritronics
This is a brief overview of the state of the art of spin caloritronics, the
science and technology of controlling heat currents by the electron spin degree
of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh,
S. Valenzuela and Y. Kimura, Oxford University Pres
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Acoustic spin pumping as the origin of the long-range spin Seebeck effect
The spin Seebeck effect (SSE) is known as the generation of 'spin voltage' in
a magnet as a result of a temperature gradient. Spin voltage stands for the
potential for spins, which drives a spin current. The SSE is of crucial
importance in spintronics and energy-conversion technology, since it enables
simple and versatile generation of spin currents from heat. The SSE has been
observed in a variety of materials ranging from magnetic metals and
semiconductors to magnetic insulators. However, the mechanism, the long-range
nature, of the SSE in metals is still to be clarified. Here we found that,
using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate, the
long-range spin voltage induced by the SSE in magnetic metals is due to
phonons. Under a temperature gradient in the sapphire, surprisingly, the
voltage generated in the Pt layer is shown to reflect the wire position,
although the wire is isolated both electrically and magnetically. This
non-local voltage is direct evidence that the SSE is attributed to the coupling
of spins and phonons. We demonstrate this coupling by directly injecting sound
waves, which realizes the acoustic spin pumping. Our finding opens the door to
"acoustic spintronics" in which phonons are exploited for constructing
spin-based devices.Comment: 18 pages, 6 figure
Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study
<p>Abstract</p> <p>Background</p> <p>Brain size is associated with cognitive ability in adulthood (correlation ~ .3), but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life.</p> <p>Methods</p> <p>We recruited 107 community-dwelling volunteers (29% male) aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g) from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA) (an estimate of maximal brain volume), and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA.</p> <p>Results</p> <p>Whole brain volume (WBV) correlated with general cognitive ability (g) (r = .21, P < .05). Statistically significant associations between brain areas and specific cognitive abilities became non-significant when corrected for maximal brain volume (estimated using ICA), i.e. there were no statistically significant associations between atrophy and cognitive ability. The association between WBV and g was largely attenuated (from .21 to .03: i.e. attenuating the variance by 98%) by correcting for ICA. ICA accounted for 6.2% of the variance in g in old age, whereas atrophy accounted for < 1%.</p> <p>Conclusion</p> <p>The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.</p
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Mutation analysis of the Fanconi anaemia A gene in breast tumours with loss of heterozygosity at 16q24.3
The recently identified Fanconi anaemia A (FAA) gene is located on chromosomal band 16q24.3 within a region that has been frequently reported to show loss of heterozygosity (LOH) in breast cancer. FAA mutation analysis of 19 breast tumours with specific LOH at 16q24.3 was performed. Single-stranded conformational polymorphism (SSCP) analysis on cDNA and genomic DNA, and Southern blotting failed to identify any tumour-specific mutations. Five polymorphisms were identified, but frequencies of occurrence did not deviate from those in a normal control population. Therefore, the FAA gene is not the gene targeted by LOH at 16q24.3 in breast cancer. Another tumour suppressor gene in this chromosomal region remains to be identified. © 1999 Cancer Research Campaig
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
- …