9 research outputs found

    Non-coalescence of oppositely charged drops

    Full text link
    Oppositely charged drops have long been assumed to experience an attractive force that favors their coalescence. Here we demonstrate the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to ‘bounce’ off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction

    Long-wave interface instabilities of a two-layer system under periodic excitation for thin films

    No full text
    The stability of a system of two thin liquid films under AC electroosmotic flow is studied using linear stability analysis for long-wave disturbances. The system is bounded by two rigid plates which act as substrate. Boltzmann charge distribution is assumed for the two electrolyte solutions. The effect of van der Waals interactions in these thin films is incorporated in the momentum equations through the disjoining pressure. The base-state velocity profile from the present study is compared with simple experiments and other analytical results. Parametric study involving various electrochemical factors is performed and the stability behaviour is analysed using growth rate, marginal stability, critical amplitude and maximum growth rate in phase space. An increase in the disjoining pressure is found to decrease stability of the system. On the other hand, increasing the frequency of the applied electric field is found to stabilize the system. However, the dependence of the stability on parameters such as viscosity ratio, permittivity ratio, interface zeta potential and interface charge depends not only on the value of individual parameters but also on the rest of the parameters. Design of experiments (DOE) is used to observe the general trend of stability with different parameters.by Abhishek Navarkar, S. Amiroudine, E. A. Demekhin, U. Ghosh and S. Chakrabort

    Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review

    No full text
    There are several classes of subsurface colloids, abiotic and biotic. Basically, small particles of inorganic, organic and pathogenic biocolloids variety exist in natural subsurface system. Transport of these pathogenic biocolloidal contaminants (Viruses, bacteria and protozoa) pose a great risk in water resources and have caused large outbreaks of waterborne diseases. Biocolloid transport processes through saturated and unsaturated porous media is of significant interest, from the perspective of protection of groundwater supplies from contamination, assessment of risk from pathogens in groundwater and for the design of better water treatment systems to remove biocolloids from drinking water supplies This paper has reviewed the large volume of work that has already been done and the progress that has been made towards understanding the various basic multi-processes to predicting the biocolloid transport in saturated and unsaturated porous media. There are several basic processes such as physical, chemical and biological processes which are important in biocolloid transport. The physical processes such as advection, dispersion, diffusion, straining and physical filtration, adsorption and biological processes such as growth/decay processes and include active adhesion/detachment, survival and chemotaxis are strongly affected on biocolloid transport in saturated and unsaturated porous media.The unsaturated zone may play an important role in protecting aquifers from biocolloidal contamination by retaining them in the solid phase during their transport through the zone. Finally, author here highlighted the future research direction based on his critical review on biocolloid transport in saturated and unsaturated porous media
    corecore