195 research outputs found

    Human sex development: targeted technologies to improve diagnosis

    Get PDF
    A new study of disorders of sex development presents an improved targeted next-generation sequencing approach for their diagnosis

    Primary adrenal insufficiency: New genetic causes and their long-term consequences

    Get PDF
    Primary adrenal insufficiency (PAI) is a potentially life‐threatening condition that requires urgent diagnosis and treatment. Whilst the most common causes are congenital adrenal hyperplasia (CAH) in childhood and autoimmune adrenal insufficiency in adolescence and adulthood, more than 30 other physical and genetics cause of PAI have been reported. Reaching a specific diagnosis can have implications for management and for monitoring associated features, as well as for counselling families about recurrence risk in siblings and relatives. Here, we describe some recent insights into the genetics of adrenal insufficiency and associated molecular mechanisms. We discuss (a) the role of the nuclear receptors DAX‐1 (NR0B1) and steroidogenic factor‐1 (SF‐1, NR5A1) in human adrenal and reproductive dysfunction; (b) multisystem growth restriction syndromes due to gain‐of‐function in the growth repressors CDKN1C (IMAGE syndrome) and SAMD9 (MIRAGE syndrome), or loss of POLE1; (c) nonclassic forms of STAR and P450scc/CYP11A1 insufficiency that present with a delayed‐onset adrenal phenotype and represent a surprisingly prevalent cause of undiagnosed PAI; and (d) a new sphingolipidosis causing PAI due to defects in sphingosine‐1‐phosphate lyase‐1 (SGPL1). Reaching a specific diagnosis can have life‐long implications for management. In some situations, milder or nonclassic forms of these conditions can first present in adulthood and may have been labelled, “Addison's disease.

    DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease.

    Get PDF
    DAX-1 (NR0B1) and SF-1 (NR5A1) are two nuclear receptor transcription factors that play a key role in human adrenal and reproductive development. Loss of DAX-1 function is classically associated with X-linked adrenal hypoplasia congenita. This condition typically affects boys and presents as primary adrenal insufficiency in early infancy or childhood, hypogonadotropic hypogonadism at puberty and impaired spermatogenesis. Late onset forms of this condition and variant phenotypes are increasingly recognized. In contrast, disruption of SF-1 only rarely causes adrenal insufficiency, usually in combination with testicular dysgenesis. Variants in SF-1/NR5A1 more commonly cause a spectrum of reproductive phenotypes ranging from 46,XY DSD (partial testicular dysgenesis or reduced androgen production) and hypospadias to male factor infertility or primary ovarian insufficiency. Making a specific diagnosis of DAX-1 or SF-1 associated conditions is important for long-term monitoring of endocrine and reproductive function, appropriate genetic counselling for family members, and for providing appropriate informed support for young people

    Persistent unexplained congenital clitoromegaly in females born extremely prematurely

    Get PDF
    Objective: Unexplained clitoromegaly is a rare but well recognised feature in girls born premature. Although detected at birth, girls may re-present during childhood to paediatric urologists and gynaecologists who should be aware of this condition. The aim of the study was to describe the clinical findings and management of a series of girls presenting with persistent congenital clitoromegaly associated with prematurity. / Materials and methods: This was a retrospective notes review set in a tertiary referral centre for Paediatric and Adolescent Gynaecology (PAG). / Results: Eight girls with a mean age of 6 years were seen over an eight year period. In all cases a Disorder of Sex Development (DSD) had been previously excluded. The main symptoms were discomfort or concern about appearance. On examination five girls had excess skin over the clitoris and three had enlarged corporal tissue. Management included reassurance and simple measures to ease discomfort. In two cases the parents requested referral to a paediatric urologist to consider clitoral surgery. / Conclusion: As survival rates for extreme prematurity improve, paediatric urologists and gynaecologists are likely to see more of these cases. Clinicians must be familiar with this condition to ensure children are managed appropriately

    Mitochondrial disease and endocrine dysfunction

    Get PDF
    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases

    Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure

    Get PDF
    Disruption of the P450 side-chain cleavage cytochrome (P450scc) enzyme due to deleterious mutations of the CYP11A1 gene is thought to be incompatible with fetal survival because of impaired progesterone production by the fetoplacental unit. We present a 46, XY patient with a homozygous disruption of CYP11A1.The child was born prematurely with complete sex reversal and severe adrenal insufficiency. Laboratory data showed diminished or absent steroidogenesis in all pathways. Molecular genetic analysis of the CYP11A1 gene revealed a homozygous single nucleotide deletion leading to a premature termination at codon position 288. This mutation will delete highly conserved regions of the P450scc enzyme and thus is predicted to lead to a nonfunctional protein. Both healthy parents were heterozygous for this mutation.Our report demonstrates that severe disruption of P450scc can be compatible with survival in rare instances. Furthermore, defects in this enzyme are inherited in an autosomal-recessive fashion, and heterozygote carriers can be healthy and fertile. The possibility of P450scc-independent pathways of steroid synthesis in addition to the current concept of luteoplacental shift of progesterone synthesis in humans has to be questioned

    Clinical case seminar - Hypogonadotropic hypogonadism as a presenting feature of late-onset X-linked adrenal hypoplasia congenita

    Get PDF
    Mutations in the orphan nuclear receptor DAX-1 cause X-linked adrenal hypoplasia congenita. Affected boys usually present with primary adrenal failure in early infancy or childhood. Impaired sexual development because of hypogonadotropic hypogonadism becomes apparent at the time of puberty. We report adult-onset adrenal hypoplasia congenita in a patient who presented with hypogonadism at 28 yr of age. Although he had no clinical evidence of adrenal dysfunction, compensated primary adrenal failure was diagnosed by biochemical testing. Semen analysis showed azoospermia, and he did not achieve fertility after 8 months of treatment with gonadotropins. A novel Y380D DAX-1 missense mutation, which causes partial loss of function in transient gene expression assays, was found in this patient. This case demonstrates that partial loss-of-function mutations in DAX1 can present with hypogonadotropic hypogonadism and covert adrenal failure in adulthood. Further, an important role for DAX-1 in spermatogenesis in humans is confirmed, supporting findings in the Dax1 (Ahch) knockout mouse

    Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia

    Get PDF
    Objective: Familial glucocorticoid deficiency type I (FGD1) is a rare form of primary adrenal insufficiency resulting from recessive mutations in the ACTH receptor (MC2R, MC2R). Individuals with this condition typically present in infancy or childhood with signs and symptoms of cortisol insufficiency, but disturbances in the renin-angiotensin system, aldosterone synthesis or sodium homeostasis are not a well-documented association of FGD1. As ACTH stimulation has been shown to stimulate aldosterone release in normal controls, and other causes of hyponatraemia can occur in children with cortisol deficiency, we investigated whether MC2R changes might be identified in children with primary adrenal failure who were being treated for mineralocorticoid insufficiency. Design: Mutational analysis of MC2R by direct sequencing. Patients: Children (n = 22) who had been diagnosed with salt-losing forms of adrenal hypoplasia (19 isolated cases, 3 familial), and who were negative for mutations in DAX1 (NR0B1) and SF1 (NR5A1). Results: MC2R mutations were found in three individuals or kindred (I: homozygous S74I; II: novel compound heterozygous R146H/560delT; III: novel homozygous 579-581delTGT). These changes represent severely disruptive loss-of-function mutations in this G-protein coupled receptor, including the first reported homozygous frameshift mutation. The apparent disturbances in sodium homeostasis were mild, manifest at times of stress (e.g. infection, salt-restriction, heat), and likely resolved with time. Conclusions: MC2R mutations should be considered in children who have primary adrenal failure with apparent mild disturbances in renin-sodium homeostasis. These children may have been misdiagnosed as having salt-losing adrenal hypoplasia. Making this diagnosis has important implications for treatment, counselling and long-term prognosi

    Ambiguous genitalia.

    Get PDF
    corecore