16 research outputs found

    Mechanisms of plasma non-transferrin bound iron generation: insights from comparing transfused diamond blackfan anaemia with sickle cell and thalassaemia patients

    Get PDF
    In transfusional iron overload, extra‐hepatic iron distribution differs, depending on the underlying condition. Relative mechanisms of plasma non‐transferrin bound iron (NTBI) generation may account for these differences. Markers of iron metabolism (plasma NTBI, labile iron, hepcidin, transferrin, monocyte SLC40A1 [ferroportin]), erythropoiesis (growth differentiation factor 15, soluble transferrin receptor) and tissue hypoxia (erythropoietin) were compared in patients with Thalassaemia Major (TM), Sickle Cell Disease and Diamond‐Blackfan Anaemia (DBA), with matched transfusion histories. The most striking differences between these conditions were relationships of NTBI to erythropoietic markers, leading us to propose three mechanisms of NTBI generation: iron overload (all), ineffective erythropoiesis (predominantly TM) and low transferrin‐iron utilization (DBA)

    Characterization of geological materials using ion and photon beams.

    No full text
    Geological specimens are often complex materials that require different analytical methods for their characterization. The parameters of interest may include the chemical composition of major, minor and trace elements. The chemical compounds incorporated in the minerals, the crystal structure and isotopic composition need to be considered. Specimens may be highly heterogeneous thus necessitating analytical methods capable of measurements on small sample volumes with high spatial resolution and sensitivity. Much essential information on geological materials can be obtained by using ion or photon beams. In this chapter we describe the principal analytical techniques based on particle accelerators, showing some applications that are hardly possible with conventional methods. In particular, the following techniques will be discussed: (1) Synchrotron radiation (SR) induced X-ray emission (SRIXE) and particle-induced X-ray emission (PEE) and other ion beam techniques for trace element analysis. (2) Accelerator mass spectrometry (AMS) for ultra sensitive analysis of stable nuclides and long-lived radionuclides. In most of the cases also the possibilities of elemental and isotopic analysis with high resolution will be discussed
    corecore