7 research outputs found

    Local hypoxia is produced at sites of intratumour injection

    Get PDF
    Intratumour injection, commonly used for gene or drug delivery but also associated with needle biopsy or insertion of invasive measuring devices, may damage tumour microvessels. To examine this possibility, SCCVII tumours grown subcutaneously in C3H mice were injected with a 26 gauge needle containing 0.1 ml of the fluorescent dye Hoechst 33342 to label cells lining the track of the needle. Hoechst-labelled cells sorted from these tumours were more sensitive to killing by hypoxic cell cytotoxins (tirapazamine, RSU-1069) and less sensitive to damage by ionizing radiation. Hoechst-labelled cells also bound the hypoxia marker pimonidazole when given by i.p. injection. Intratumour injection transiently increased hypoxia from 18 to 70% in the tumour cells adjacent to the track of the needle. The half-time for return to pre-treatment oxygenation was about 30 min; oxygenation of tumour cells along the track had recovered by 20 h after intratumour injection. This effect could have significant implications for intratumour injection of drugs, cytokines or vectors that are affected by the oxygenation status of the tumour cells as well as potential effects on biodistribution via local microvasculature

    Drug Discovery for Duchenne Muscular Dystrophy via Utrophin Promoter Activation Screening

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use. Methodology/Principal Findings: We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells. Conclusions/Significance: We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics an
    corecore