29 research outputs found
かつおだし摂取のマウスの情動行動及び脳内パルブアルブミン陽性ニューロンに及ぼす影響
富山大学・富生命博甲第88号・Jargalsaikhan Undarmaa・2017/03/23Nutritional Neuroscience,Published online:21 Jul 2016,1-16,doi:10.1080/1028415X.2016.1208429に掲載富山大学201
Annual cycle of the legume pod borer Maruca vitrata Fabricius (Lepidoptera: Crambidae) in southwestern Burkina Faso
Maruca vitrata is an economically significant insect pest of cowpea in sub-Saharan Africa. Understanding the seasonal population patterns of M. vitrata is essential for the establishment of effective pest management strategies. M. vitrata larval populations on cultivated cowpea and adult flying activities were monitored in addition to scouting for host plants and parasitoids during 2 consecutive years in 2010 and 2011 in southwestern Burkina Faso. Our data suggest that M. vitrata populations overlapped on cultivated cowpea and alternate host plants during the rainy season. During the cowpea off-season, M. vitrata maintained a permanent population on the wild host plants Mucuna poggei and Daniella oliveri. The parasitoid fauna include three species, Phanerotoma leucobasis Kri., Braunsia kriegeri End. and Bracon sp. Implications of these finding for pest management strategies are discussed
Social Isolation-Induced Aggression Potentiates Anxiety and Depressive-Like Behavior in Male Mice Subjected to Unpredictable Chronic Mild Stress
Accumulating epidemiological evidence shows that life event stressors are major vulnerability factors for psychiatric diseases such as major depression. It is also well known that social isolation in male mice results in aggressive behavior. However, it is not known how social isolation-induced aggression affects anxiety and depressive-like behavior in isolated male mice subjected to unpredictable chronic mild stress (CMS), an animal model of depression.C57/B6 male mice were divided into 3 groups; non-stressed controls, in Group I; isolated mice subjected to the CMS protocol in Group II and aggression by physical contact in socially isolated mice subjected to the CMS protocol in Group III. In the sucrose intake test, ingestion of a 1% sucrose solution by mice in Groups II and III was significantly lower than in Group I. Furthermore, intake of this solution in Group III mice was significantly lower than in Group II mice. In the open field test, mice in Group III, showed reduced locomotor activity and reduced entry and retention time in the central zone, compared to Groups I and II mice. Moreover, the distances moved in 1 hour by Group III mice did not differ between night and morning. In the light/black box test, Groups II and III animals spent significantly less time in the light box compared to Group I animals. In the tail suspension test (TST) and forced swimming test (FST), the immobility times of Group II and Group III mice were significantly longer than in Group I mice. In addition, immobility times in the FST were significantly longer in Group III than in Group II mice.These findings show that social isolation-induced aggression could potentiate anxiety and depressive-like behaviors in isolated male mice subjected to CMS
An assessment of the risk of Bt-cowpea to non-target organisms in West Africa
Cowpea (Vigna unguiculata Walp.) is the most economically important legume crop in arid regions of sub-Saharan Africa. Cowpea is grown primarily by subsistence farmers who consume the leaves, pods and grain on farm or sell grain in local markets. Processed cowpea foods such as akara (a deep-fat fried fritter) are popular in the rapidly expanding urban areas. Demand far exceeds production due, in part, to a variety of insect pests including, in particular, the lepidopteran legume pod borer (LPB) Maruca vitrata. Genetically engineered Bt-cowpea, based on cry1Ab (Event 709) and cry2Ab transgenes, is being developed for use in sub-Saharan Africa to address losses from the LBP. Before environmental release of transgenic cowpeas, the Bt Cry proteins they express need to be assessed for potential effects on non-target organisms, particularly arthropods. Presented here is an assessment of the potential effects of those Cry proteins expressed in cowpea for control of LPB. Based on the history of safe use of Bt proteins, as well as the fauna associated with cultivated and wild cowpea in sub-Saharan Africa results indicate negligible effects on non-target organisms