58 research outputs found

    Infertility treatment outcome in sub groups of obese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a common disorder with a negative impact on IVF treatment outcome. It is not clear whether morbidly obese women (BMI >= 35 kg/m2) respond to treatment differently as compared to obese women (BMI = 30–34.9 kg/m2) in IVF. Our aim was to compare the outcome of IVF or ICSI treatments in obese patients to that in morbidly obese patients.</p> <p>Methods</p> <p>This retrospective cohort study was conducted in a tertiary care centre. Patients inclusion criteria were as follows; BMI ≥ 30, age 20–40 years old, first cycle IVF/ICSI treatment with primary infertility and long follicular pituitary down regulation protocol.</p> <p>Results</p> <p>A total of 406 obese patients (group A) and 141 morbidly obese patients (group B) satisfied the inclusion criteria. Average BMI was 32.1 ± 1.38 kg/m2 for group A versus 37.7 ± 2.99 kg/m<sup>2 </sup>for group B. Patient age, cause of infertility, duration of stimulation, fertilization rate, and number of transferred embryos were similar in both groups. Compared to group A, group B had fewer medium size and mature follicles (14 vs. 16), fewer oocytes collected (7 vs. 9) and required higher doses of HMG (46.2 vs. 38.5 amps). There was also a higher cancellation rate in group B (28.3% vs. 19%) and lower clinical pregnancy rate per started cycle (19.9% vs. 28.6%).</p> <p>Conclusion</p> <p>In a homogenous infertile and obese patient population stratified according to their BMI, morbid obesity is associated with unfavorable IVF/ICSI cycle outcome as evidenced by lower pregnancy rates. It is recommended that morbidly obese patients undergo appropriate counseling before the initiation of this expensive and invasive therapy.</p

    Implications of land use change on the national terrestrial carbon budget of Georgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990.</p> <p>Results</p> <p>The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions.</p> <p>Conclusions</p> <p>We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.</p

    Action Mechanism of Inhibin α-Subunit on the Development of Sertoli Cells and First Wave of Spermatogenesis in Mice

    Get PDF
    Inhibin is an important marker of Sertoli cell (SC) activity in animals with impaired spermatogenesis. However, the precise relationship between inhibin and SC activity is unknown. To investigate this relationship, we partially silenced both the transcription and translation of the gene for the α-subunit of inhibin, Inha, using recombinant pshRNA vectors developed with RNAi-Ready pSIREN-RetroQ-ZsGreen Vector (Clontech Laboratories, Mountain View, Calif). We found that Inha silencing suppresses the cell-cycle regulators Cyclin D1 and Cyclin E and up-regulates the cell-cycle inhibitor P21 (as detected by Western blot analysis), thereby increasing the number of SCs in the G1 phase of the cell cycle and decreasing the amount in the S-phase of the cell cycle (as detected by flow cytometry). Inha silencing also suppressed Pdgfa, Igf1, and Kitl mRNA levels and up-regulated Tgfbrs, Inhba, Inhbb, Cyp11a1, Dhh, and Tjp1 mRNA levels (as indicated by real-time polymerase chain reaction [PCR] analysis). These findings indicate that Inha has the potential to influence the availability of the ligand inhibin and its antagonist activin in the SC in an autocrine manner and inhibit the progression of SC from G1 to S. It may also participate in the development of the blood–testis barrier, Leydig cells, and spermatogenesis through its effect on Dhh, Tjp1, Kitl, and Pdgfa. Real-time PCR and Western blot analyses of Inha, Inhba, and Inhbb mRNA and Inha levels over time show that Inha plays an important role in the formation of round spermatid during the first wave of spermatogenesis in mice
    corecore