20 research outputs found

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease

    Human BRCA1-Associated Breast Cancer: No Increase in Numerical Chromosomal Instability Compared to Sporadic Tumors

    Full text link
    BRCA1 is a major gatekeeper of genomic stability. Acting in multiple central processes like double-strand break repair, centrosome replication, and checkpoint control, BRCA1 participates in maintaining genomic integrity and protects the cell against genomic instability. Chromosomal instability (CIN) as part of genomic instability is an inherent characteristic of most solid tumors and is also involved in breast cancer development. In this study, we determined the extent of CIN in 32 breast cancer tumors of women with a BRCA1 germline mutation compared to 62 unselected breast cancers. We applied fluorescence in situ hybridization (FISH) with centromere-specific probes for the chromosomes 1, 7, 8, 10, 17, and X and locus-specific probes for 3q27 (BCL6), 5p15.2 (D5S23), 5q31 (EGR1), 10q23.3 (PTEN), and 14q32 (IGH@) on formalin-fixed paraffin-embedded tissue microarray sections. Our hypothesis of an increased level of CIN in BRCA1-associated breast cancer could not be confirmed by this approach. Surprisingly, we detected no significant difference in the extent of CIN in BRCA1-mutated versus sporadic tumors. The only exception was the CIN value for chromosome 1. Here, the extent of CIN was slightly higher in the group of sporadic tumors

    Taxane benefit in breast cancer--a role for grade and chromosomal stability

    Full text link
    Chromosomal instability, which is a characteristic of many human cancers, contributes to intratumour heterogeneity and has been functionally implicated in resistance to taxane therapy in tumour models. However, defining the status of tumour chromosomal instability in a given tumour to test this hypothesis remains challenging. Measurements of numerical and structural chromosomal heterogeneity demonstrate that histological grade correlates with chromosomal instability in oestrogen receptor (ER)-positive breast cancer. Using data on adjuvant taxane therapy in women with breast cancer, we propose that patients with low-grade ER-positive tumours, which are thought to be chromosomally stable, might derive unexpected benefit from taxane therapy. We discuss the implications of the relationships between tumour grade, chromosomal instability and intratumour heterogeneity, the development of high-throughput methods to define tumour chromosomal instability and the potential use of chromosomal instability to tailor therapy
    corecore