406 research outputs found

    Use of the novel hemostatic textile Stasilon® to arrest refractory retroperitoneal hemorrhage: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Stasilon<sup>® </sup>is a novel hemostatic woven textile composed of allergen-free fibers of continuous filament fiberglass and bamboo yarn. The development of this product resulted from controlled <it>in vitro </it>thrombogenic analysis of an array of potentially hemostatic textile materials and it has been cleared for both external and internal use by the United States Food and Drug Administration for the arrest of hemorrhage. The goal of the study was to assess the hemostatic and adhesive properties of Stasilon<sup>® </sup>in the setting of life-threatening refractory hemorrhage.</p> <p>Case presentation</p> <p>A 39-year-old Caucasian man presented with severe necrotic pancreatitis that failed multiple aggressive attempts to control associated bleeding with electrocautery, suture ligation, and sequential anatomic packing with cotton-based sponges. Subsequent retroperitoneal packing with Stasilon<sup>® </sup>produced a non-adherent wound-dressing interface and resulted in the achievement of persistent hemostasis in the operative field.</p> <p>Conclusion</p> <p>In our patient, Stasilon<sup>® </sup>was demonstrated to be effective in the arrest of refractory hemorrhage.</p

    Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): results from a UK multi-centre, randomised, double blind, placebo-controlled pilot trial.

    Get PDF
    BACKGROUND: There is increasing interest in the timely administration of concentrated sources of fibrinogen to patients with major traumatic bleeding. Following evaluation of early cryoprecipitate in the CRYOSTAT 1 trial, we explored the use of fibrinogen concentrate, which may have advantages of more rapid administration in acute haemorrhage. The aims of this pragmatic study were to assess the feasibility of fibrinogen concentrate administration within 45 minutes of hospital admission and to quantify efficacy in maintaining fibrinogen levels ≥ 2 g/L during active haemorrhage. METHODS: We conducted a blinded, randomised, placebo-controlled trial at five UK major trauma centres with adult trauma patients with active bleeding who required activation of the major haemorrhage protocol. Participants were randomised to standard major haemorrhage therapy plus 6 g of fibrinogen concentrate or placebo. RESULTS: Twenty-seven of 39 participants (69%; 95% CI, 52-83%) across both arms received the study intervention within 45 minutes of admission. There was some evidence of a difference in the proportion of participants with fibrinogen levels ≥ 2 g/L between arms (p = 0.10). Fibrinogen levels in the fibrinogen concentrate (FgC) arm rose by a mean of 0.9 g/L (SD, 0.5) compared with a reduction of 0.2 g/L (SD, 0.5) in the placebo arm and were significantly higher in the FgC arm (p < 0.0001) at 2 hours. Fibrinogen levels were not different at day 7. Transfusion use and thromboembolic events were similar between arms. All-cause mortality at 28 days was 35.5% (95% CI, 23.8-50.8%) overall, with no difference between arms. CONCLUSIONS: In this trial, early delivery of fibrinogen concentrate within 45 minutes of admission was not feasible. Although evidence points to a key role for fibrinogen in the treatment of major bleeding, researchers need to recognise the challenges of timely delivery in the emergency setting. Future studies must explore barriers to rapid fibrinogen therapy, focusing on methods to reduce time to randomisation, using 'off-the-shelf' fibrinogen therapies (such as extended shelf-life cryoprecipitate held in the emergency department or fibrinogen concentrates with very rapid reconstitution times) and limiting the need for coagulation test-based transfusion triggers. TRIAL REGISTRATION: ISRCTN67540073 . Registered on 5 August 2015

    Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation

    Get PDF
    The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock

    24-h sheltering behaviour of individually kept horses during Swedish summer weather

    Get PDF
    Provision of shelter for horses kept on summer pasture is rarely considered in welfare guidelines, perhaps because the benefits of shelter in warm conditions are poorly documented scientifically. For cattle, shade is a valued resource during summer and can mitigate the adverse effects of warm weather on well-being and performance. We found in a previous study that horses utilized shelters frequently in summer. A shelter with a roof and closed on three sides (shelter A) was preferred and can reduce insect pressure whereas a shelter with roof and open on three sides was not utilized. However, shelter A restricts the all-round view of a horse, which may be important for horses as flight animals. Therefore, we studied whether a shelter with roof, where only the upper half of the rear wall was closed (shelter B), would be utilized while maintaining insect protection properties and satisfying the horses’ sense for security. A third shelter was offered with walls but no roof (shelter C) to evaluate whether the roof itself is an important feature from the horse’s perspective. Eight Warmblood horses were tested each for 2 days, kept individually for 24 h in two paddocks with access to shelters A and B, or shelters A and C, respectively. Shelter use was recorded continuously during the night (1800–2400 h, 0200–0600 h) and the following day (0900–1600 h), and insect defensive behaviour (e.g., tail swish) in instantaneous scan samples at 5-min intervals during daytime

    The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 321-328, doi:10.1007/s00338-010-0697-z.Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was non-linear. A statistically significant decrease in calcification was only detected between Ωar = < 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these 3 variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.This study was supported by NSF award 0648157 (Cohen and McCorkle), NSF 1041106 (Cohen, McCorkle), NSF 1041052 (de Putron), the VITA foundation (de Putron), WHOI Ocean Life Institute (Cohen), PEI and EEB Departments at Princeton University, Bill and Anne Charrier, and the Anthony B. Evnin, Dean’s Roundtable, and Edmund Hayes Sr. senior thesis funds (Dillon)
    • …
    corecore