39 research outputs found

    Too little but not too late: Results of a literature review to improve routine immunization programs in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, immunization services have been the center of renewed interest with increased funding to improve services, acceleration of the introduction of new vaccines, and the development of a health systems approach to improve vaccine delivery. Much of the credit for the increased attention is due to the work of the GAVI Alliance and to new funding streams. If routine immunization programs are to take full advantage of the newly available resources, managers need to understand the range of proven strategies and approaches to deliver vaccines to reduce the incidence of diseases. In this paper, we present strategies that may be used at the sub-national level to improve routine immunization programs.</p> <p>Methods</p> <p>We conducted a systematic review of studies and projects reported in the published and gray literature. Each paper that met our inclusion criteria was rated based on methodological rigor and data were systematically abstracted. Routine-immunization – specific papers with a methodological rigor rating of greater than 60% and with conclusive results were reported.</p> <p>Results</p> <p>Greater than 11,000 papers were identified, of which 60 met our inclusion criteria and 25 papers were reported. Papers were grouped into four strategy approaches: bringing immunizations closer to communities (n = 11), using information dissemination to increase demand for vaccination (n = 3), changing practices in fixed sites (n = 4), and using innovative management practices (n = 7).</p> <p>Conclusion</p> <p>Immunization programs are at a historical crossroads in terms of developing new funding streams, introducing new vaccines, and responding to the global interest in the health systems approach to improving immunization delivery. However, to complement this, actual service delivery needs to be strengthened and program managers must be aware of proven strategies. Much was learned from the 25 papers, such as the use of non-health workers to provide numerous services at the community level. However it was startling to see how few papers were identified and in particular how few were of strong scientific quality. Further well-designed and well-conducted scientific research is warranted. Proposed areas of additional research include integration of additional services with immunization delivery, collaboration of immunization programs with new partners, best approaches to new vaccine introduction, and how to improve service delivery.</p

    Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster

    Get PDF
    Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila
    corecore