20 research outputs found

    Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions

    No full text
    Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells

    Kinetics and Mechanisms of the Oxidation of Gaseous Sulfur Compounds

    No full text
    The problems associated with global climate change in general, and acid rain in particular, have led to a great deal of research on the atmospheric and combustion chemistry of sulfur. Developments over the last decade have led to significant progress in our understanding of the kinetics and mechanisms of the atmospheric oxidation chemistry of natural and anthropogenic sulfur. Rather less effort, however, has been placed on developing an understanding of sulfur combustion kinetics; the emphasis of mitigation research has instead been placed on removal of sulfur from fuels or development of scrubbing techniques to remove SO2 from stack gases

    Hydrolysierende Fermente

    No full text
    corecore