29 research outputs found

    Impaired Thymic Selection and Abnormal Antigen-Specific T Cell Responses in Foxn1Δ/Δ Mutant Mice

    Get PDF
    Foxn1(Δ/Δ) mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects of these defects on thymic selection.We used Foxn1(Δ/Δ); DO11 Tg and Foxn1(Δ/Δ); OT1 Tg mice as positive selection and Foxn1(Δ/Δ); MHCII I-E mice as negative selection models. We also used an in vivo system of antigen-specific reactivity to test the function of peripheral T cells. Our data show that the capacity for positive and negative selection of both CD4 and CD8 SP thymocytes was reduced in Foxn1(Δ/Δ) mutants compared to Foxn1(+/Δ) control mice. These defects were associated with reduction of both MHC Class I and Class II expression, although the resulting peripheral T cells have a broad TCR Vβ repertoire. In this deficient thymic environment, immature CD4 and CD8 SP thymocytes emigrate from the thymus into the periphery. These T cells had an incompletely activated profile under stimulation of the TCR signal in vitro, and were either hypersensitive or hyporesponsive to antigen-specific stimulation in vivo. These cell-autonomous defects were compounded by the hypocellular peripheral environment caused by low thymic output.These data show that a primary defect in the thymic microenvironment can cause both direct defects in selection which can in turn cause indirect effects on the periphery, exacerbating functional defects in T cells

    A merchant mechanism for electricity transmission expansion

    No full text
    We propose a merchant mechanism to expand electricity transmission based on long-term financial transmission rights (FTRs). Due to network loop flows, a change in network capacity might imply negative externalities on existing transmission property rights. The system operator thus needs a protocol for awarding incremental FTRs that maximize investors ’ preferences, and preserves certain currently unallocated FTRs (or proxy awards) so as to maintain revenue adequacy. In this paper we define a proxy award as the best use of the current network along the same direction as the incremental awards. We then develop a bi-level programming model for allocation of long-term FTRs according to this rule and apply it to different network topologies. We find that simultaneous feasibility for a transmission expansion project crucially depends on the investor-preference and the proxy-preference parameters. Likewise, for a given amount of pre-existing FTRs the larger the current capacity the greater the need to reserve some FTRs for possible negative externalities generated by the expansion changes
    corecore