34 research outputs found

    Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    Get PDF
    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment

    Primary Prevention of Coronary Artery Disease

    No full text

    Snails have stronger indirect positive effects on submerged macrophyte growth attributes than zooplankton

    No full text
    Phytoplankton and epiphyton often compete with submerged macrophytes. Grazing by zooplankton and/or epiphyton grazers should promote an indirect positive effect on submerged macrophyte growth rate. Hence, we mimicked shallow lakes conditions in mesocosms using a factorial design to evaluate the indirect effects of no grazers, zooplankton, snails or both grazers on macrophyte growth attributes. After 16 weeks, both snails and zooplankton had positive effects on macrophyte stem length and biomass. However, only snails had positive effects on macrophyte number of sprouts and root biomass. In addition, the positive effect size of snails on the submerged macrophytes was twice as large as the effect size of the zooplankton. Our study suggests that benthic food chains might be more capable of increasing resilience and affecting the stability of the clear-water state in shallow lakes than pelagic food chains. However, long-term experiments with varying relative proportions of herbivores and different macrophyte species, as well as in situ experiments, will be necessary to test the generality of our findings. Understanding the relative effects of benthic versus pelagic grazers on submerged macrophytes may increase the success of shallow lake restoration and should be taken into account when designing management and restoration efforts for shallow lake systems
    corecore