30 research outputs found

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    Measuring measurement

    Full text link
    Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e. tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography: we identify the optimal positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process, and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon number resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at http://www.quantiki.org/video_abstracts/0807244

    Experimental investigation of the entanglement-assisted entropic uncertainty principle

    Full text link
    The uncertainty principle, which bounds the uncertainties involved in obtaining precise outcomes for two complementary variables defining a quantum particle, is a crucial aspect in quantum mechanics. Recently, the uncertainty principle in terms of entropy has been extended to the case involving quantum entanglement. With previously obtained quantum information for the particle of interest, the outcomes of both non-commuting observables can be predicted precisely, which greatly generalises the uncertainty relation. Here, we experimentally investigated the entanglement-assisted entropic uncertainty principle for an entirely optical setup. The uncertainty is shown to be near zero in the presence of quasi-maximal entanglement. The new uncertainty relation is further used to witness entanglement. The verified entropic uncertainty relation provides an intriguing perspective in that it implies the uncertainty principle is not only observable-dependent but is also observer-dependent.Comment: 14 pages, 5 figure

    Subcycle Quantum Electrodynamics

    Full text link
    Besides their stunning physical properties which are unmatched in a classical world, squeezed states of electromagnetic radiation bear advanced application potentials in quantum information systems and precision metrology, including gravitational wave detectors with unprecedented sensitivity. Since the first experiments on such nonclassical light, quantum analysis has been based on homodyning techniques and photon correlation measurements. These methods require a well-defined carrier frequency and photons contained in a quantum state need to be absorbed or amplified. They currently function in the visible to near-infrared and microwave spectral ranges. Quantum nondemolition experiments may be performed at the expense of excess fluctuations in another quadrature. Here we generate mid-infrared time-locked patterns of squeezed vacuum noise. After propagation through free space, the quantum fluctuations of the electric field are studied in the time domain by electro-optic sampling with few-femtosecond laser pulses. We directly compare the local noise amplitude to the level of bare vacuum fluctuations. This nonlinear approach operates off resonance without absorption or amplification of the field that is investigated. Subcycle intervals with noise level significantly below the pure quantum vacuum are found. Enhanced fluctuations in adjacent time segments manifest generation of highly correlated quantum radiation as a consequence of the uncertainty principle. Together with efforts in the far infrared, this work opens a window to the elementary quantum dynamics of light and matter in an energy range at the boundary between vacuum and thermal background conditions.Comment: 19 pages, 4 figure
    corecore