30 research outputs found
Beating the channel capacity limit for linear photonic superdense coding
Dense coding is arguably the protocol that launched the field of quantum
communication. Today, however, more than a decade after its initial
experimental realization, the channel capacity remains fundamentally limited as
conceived for photons using linear elements. Bob can only send to Alice three
of four potential messages owing to the impossibility of carrying out the
deterministic discrimination of all four Bell states with linear optics,
reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits.
However, entanglement in an extra degree of freedom enables the complete and
deterministic discrimination of all Bell states. Using pairs of photons
simultaneously entangled in spin and orbital angular momentum, we demonstrate
the quantum advantage of the ancillary entanglement. In particular, we describe
a dense-coding experiment with the largest reported channel capacity and, to
our knowledge, the first to break the conventional linear-optics threshold. Our
encoding is suited for quantum communication without alignment and satellite
communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1
figur
Measuring measurement
Measurement connects the world of quantum phenomena to the world of classical
events. It plays both a passive role, observing quantum systems, and an active
one, preparing quantum states and controlling them. Surprisingly - in the light
of the central status of measurement in quantum mechanics - there is no general
recipe for designing a detector that measures a given observable. Compounding
this, the characterization of existing detectors is typically based on partial
calibrations or elaborate models. Thus, experimental specification (i.e.
tomography) of a detector is of fundamental and practical importance. Here, we
present the realization of quantum detector tomography: we identify the optimal
positive-operator-valued measure describing the detector, with no ancillary
assumptions. This result completes the triad, state, process, and detector
tomography, required to fully specify an experiment. We characterize an
avalanche photodiode and a photon number resolving detector capable of
detecting up to eight photons. This creates a new set of tools for accurately
detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at
http://www.quantiki.org/video_abstracts/0807244
Experimental investigation of the entanglement-assisted entropic uncertainty principle
The uncertainty principle, which bounds the uncertainties involved in
obtaining precise outcomes for two complementary variables defining a quantum
particle, is a crucial aspect in quantum mechanics. Recently, the uncertainty
principle in terms of entropy has been extended to the case involving quantum
entanglement. With previously obtained quantum information for the particle of
interest, the outcomes of both non-commuting observables can be predicted
precisely, which greatly generalises the uncertainty relation. Here, we
experimentally investigated the entanglement-assisted entropic uncertainty
principle for an entirely optical setup. The uncertainty is shown to be near
zero in the presence of quasi-maximal entanglement. The new uncertainty
relation is further used to witness entanglement. The verified entropic
uncertainty relation provides an intriguing perspective in that it implies the
uncertainty principle is not only observable-dependent but is also
observer-dependent.Comment: 14 pages, 5 figure
Subcycle Quantum Electrodynamics
Besides their stunning physical properties which are unmatched in a classical
world, squeezed states of electromagnetic radiation bear advanced application
potentials in quantum information systems and precision metrology, including
gravitational wave detectors with unprecedented sensitivity. Since the first
experiments on such nonclassical light, quantum analysis has been based on
homodyning techniques and photon correlation measurements. These methods
require a well-defined carrier frequency and photons contained in a quantum
state need to be absorbed or amplified. They currently function in the visible
to near-infrared and microwave spectral ranges. Quantum nondemolition
experiments may be performed at the expense of excess fluctuations in another
quadrature. Here we generate mid-infrared time-locked patterns of squeezed
vacuum noise. After propagation through free space, the quantum fluctuations of
the electric field are studied in the time domain by electro-optic sampling
with few-femtosecond laser pulses. We directly compare the local noise
amplitude to the level of bare vacuum fluctuations. This nonlinear approach
operates off resonance without absorption or amplification of the field that is
investigated. Subcycle intervals with noise level significantly below the pure
quantum vacuum are found. Enhanced fluctuations in adjacent time segments
manifest generation of highly correlated quantum radiation as a consequence of
the uncertainty principle. Together with efforts in the far infrared, this work
opens a window to the elementary quantum dynamics of light and matter in an
energy range at the boundary between vacuum and thermal background conditions.Comment: 19 pages, 4 figure