36 research outputs found

    A new living species of the genus Ctenomys (Rodentia: Ctenomyidae) from central-western Argentina

    Get PDF
    Abstract The genus Ctenomys Blainville, 1826 includes 68 living species of small to medium-sized (100–1200 g) caviomorph rodents of subterranean habits. During the last decade, this genus has been the subject of numerous taxonomic studies, including the description of new species and the proposal of novel synonyms. Based on phylogenetic analysis of mitochondrial DNA sequences and qualitative and quantitative morphological traits, here we review the species boundaries of the tuco-tucos of the species group of C. mendocinus and describe a new species. The new species is morphologically distinct from other phylogenetically and geographically close species of Ctenomys (e.g., C. fochi, C. mendocinus), showing several differences in their craniodental traits (e.g., proportionally longer nasals and less globose tympanic bullae). The new species occurs in montane grasslands and shrublands of northwestern Mendoza (ca. 2710 m a.s.l.) and in lowlands (ca. 1000 m a.s.l.) of the Monte Desert ecoregion in an area highly impacted by accelerated processes associated with the wine industry

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis

    No full text
    Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in β-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in beta-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis
    corecore