16 research outputs found

    Acute Renal Colic Due to Immunoglobulin Free Light Chain Kidney Stones: A Case Report of an Unusual Complication of Multiple Myeloma

    No full text
    International audienceKidney failure is common in patients with a monoclonal gammopathy, most frequently due to hypercalcemia or myeloma cast nephropathy. Immunoglobulin crystallization is an uncommon phenomenon that also results in kidney injury. We report the case of a 74-year-old man with recurrent renal colic and acute kidney injury. He presented with kappa light chain Bence-Jones proteinuria, hypogammaglobulinemia, anemia, and high plasma kappa light chain level, leading to the diagnosis of kappa light chain multiple myeloma. One calculus was collected and its analysis revealed a unique protein structure consisting of kappa immunoglobulin free light chain. Genetic sequencing of the kappa light chain identified a subgroup of variable domain previously identified as prone to crystallization. Eight cycles of cyclophosphamide-bortezomib-dexamethasone chemotherapy resulted in a partial hematologic response and kidney recovery without recurrence of renal colic. This rare case of urinary light chain nephrolithiasis highlights the importance of genetic and molecular analysis of the immunoglobulin variable domain to better understand the wide spectrum of monoclonal gammopathies

    A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy.

    No full text
    International audienceRandall-type heavy chain deposition disease (HCDD) is a rare disorder characterized by glomerular and peritubular amorphous deposits of a truncated monoclonal immunoglobulin heavy chain (HC) bearing a deletion of the first constant domain (CH1). We created a transgenic mouse model of HCDD using targeted insertion in the immunoglobulin κ locus of a human HC extracted from a HCDD patient. Our strategy allows the efficient expression of the human HC in mouse B and plasma cells, and conditional deletion of the CH1 domain reproduces the major event underlying HCDD. We show that the deletion of the CH1 domain dramatically reduced serum HC levels. Strikingly, even with very low serum level of truncated monoclonal HC, histologic studies revealed typical Randall-type renal lesions that were absent in mice expressing the complete human HC. Bortezomib-based treatment resulted in a strong decrease of renal deposits. We further demonstrated that this efficient response to proteasome inhibitors mostly relies on the presence of the isolated truncated HC that sensitizes plasma cells to bortezomib through an elevated unfolded protein response (UPR). This new transgenic model of HCDD efficiently recapitulates the pathophysiologic features of the disease and demonstrates that the renal damage in HCDD relies on the production of an isolated truncated HC, which, in the absence of a LC partner, displays a high propensity to aggregate even at very low concentration. It also brings new insights into the efficacy of proteasome inhibitor-based therapy in this pathology

    Diabetologia

    No full text
    Aims/hypothesis: Tenascin-C (TN-C) is an extracellular matrix glycoprotein highly expressed in inflammatory and cardiovascular (CV) diseases. Serum TN-C has not yet been specifically studied in individuals with type 2 diabetes, a condition associated with chronic low-grade inflammation and increased CV disease risk. In this study, we hypothesised that elevated serum TN-C at enrolment in participants with type 2 diabetes would be associated with increased risk of death and major adverse CV events (MACE) during follow-up. Methods: We used a prospective, monocentric cohort of consecutive type 2 diabetes participants (the SURDIAGENE [SUivi Rénal, DIAbète de type 2 et GENEtique] cohort) with all-cause death as a primary endpoint and MACE (CV death, non-fatal myocardial infarction or stroke) as a secondary endpoint. We used a proportional hazard model after adjustment for traditional risk factors and the relative integrated discrimination improvement (rIDI) to assess the incremental predictive value of TN-C for these risk factors. Results: We monitored 1321 individuals (58% men, mean age 64 ± 11 years) for a median of 89 months. During follow-up, 442 individuals died and 497 had MACE. Multivariate Cox analysis showed that serum TN-C concentrations were associated with an increased risk of death (HR per 1 SD: 1.27 [95% CI 1.17, 1.38]; p < 0.0001) and MACE (HR per 1 SD: 1.23 [95% CI 1.13, 1.34]; p < 0.0001). Using TN-C concentrations on top of traditional risk factors, prediction of the risk of all-cause death (rIDI: 8.2%; p = 0.0006) and MACE (rIDI: 6.7%; p = 0.0014) improved significantly, but modestly. Conclusions/interpretation: In individuals with type 2 diabetes, increased serum TN-C concentrations were independently associated with death and MACE. Therefore, including TN-C as a prognostic biomarker could improve risk stratification in these individuals
    corecore