22,163 research outputs found

    Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem

    Full text link
    We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 \rho}) in Fourier space, as a function of \rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and correction-to-scaling exponents at the roughening transition are determined to all orders in a (d - d_c) expansion. We also argue that there is a intriguing possibility that the rough phases above and below the lower critical dimension d_c = 2 (1 + \rho) are genuinely different which could lead to a re-interpretation of results in the literature.Comment: Latex, 7 pages, eps files for two figures as well as Europhys. Lett. style files included; slightly expanded reincarnatio

    The Resistance of Feynman Diagrams and the Percolation Backbone Dimension

    Full text link
    We present a new view of Feynman diagrams for the field theory of transport on percolation clusters. The diagrams for random resistor networks are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension DBD_B of the percolation backbone to three loop order. Using renormalization group methods we obtain DB=2+ϵ/21−172ϵ2/9261+2ϵ3(−74639+22680ζ(3))/4084101D_B = 2 + \epsilon /21 - 172\epsilon^2 /9261 + 2 \epsilon^3 (- 74639 + 22680 \zeta (3))/4084101, where ϵ=6−d\epsilon = 6-d with dd being the spatial dimension and ζ(3)=1.202057..\zeta (3) = 1.202057...Comment: 10 pages, 2 figure
    • …
    corecore