22,163 research outputs found
Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem
We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise
correlator R(q) ~ (1 + w q^{-2 \rho}) in Fourier space, as a function of \rho
and the spatial dimension d. By means of a stochastic Cole-Hopf transformation,
the critical and correction-to-scaling exponents at the roughening transition
are determined to all orders in a (d - d_c) expansion. We also argue that there
is a intriguing possibility that the rough phases above and below the lower
critical dimension d_c = 2 (1 + \rho) are genuinely different which could lead
to a re-interpretation of results in the literature.Comment: Latex, 7 pages, eps files for two figures as well as Europhys. Lett.
style files included; slightly expanded reincarnatio
The Resistance of Feynman Diagrams and the Percolation Backbone Dimension
We present a new view of Feynman diagrams for the field theory of transport
on percolation clusters. The diagrams for random resistor networks are
interpreted as being resistor networks themselves. This simplifies the field
theory considerably as we demonstrate by calculating the fractal dimension
of the percolation backbone to three loop order. Using renormalization
group methods we obtain , where with
being the spatial dimension and .Comment: 10 pages, 2 figure
- …