7,320 research outputs found

    Some Observations on the Performance of the Most Recent Exchange-Correlation Functionals for the Large and Chemically Diverse GMTKN55 Benchmark

    Full text link
    Benchmarks that span a broad swath of chemical space, such as GMTKN55, are very useful for assessing progress in the quest for more universal DFT functionals. We find that the WTMAD2 metrics for a great number of functionals show a clear "Jacob's Ladder hierarchy"; that the "combinatorial" development strategy of Head-Gordon and coworkers generates "best on rung" performers; that the quality of the nonlocal dispersion correction becomes more important as functionals become more accurate for nondispersion properties; that fitting against small, unrepresentative benchmark sets leads to underperforming functionals; and that {\omega}B97M(2) is currently the best DFT functional of any kind, but that revDSD-D4 functionals are able to reach similar performance using fewer parameters, and that revDOD-D4 in addition permits reduced-scaling algorithms. If one seeks a range-separated hybrid (RSH) GGA that also performs well for optical excitation energies, CAM-QTP-01 may be a viable option. The D4 dispersion model, with its partial charge dependence, appears to be clearly superior to D3BJ and even possibly NL. Should one require a double hybrid without dispersion model, noDispSD-SCAN is a viable option. Performance for the MOBH35 transition metal benchmark is different: the best double hybrids are competitive but not superior to {\omega}B97M-V, which offers the best performance compromise for mixed main group-transition metal problems.Comment: 5 pages (ICCMSE-2019 conference proceedings), AIP Conference Proceedings, in pres

    Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities

    Get PDF
    The performance of two recent {\em ab initio} computational thermochemistry schemes, W1 and W2 theory [J.M.L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999}], is assessed for an enlarged sample of thermochemical data consisting of the ionization potentials and electron affinities in the G2-1 and G2-2 sets, as well as the heats of formation in the G2-1 and a subset of the G2-2 set. We find W1 theory to be several times more accurate for ionization potentials and electron affinities than commonly used (and less expensive) computational thermochemistry schemes such as G2, G3, and CBS-QB3: W2 theory represents a slight improvement for electron affinities but no significant one for ionization potentials. The use of a two-point A+B/L5A+B/L^5 rather than a three-point A+B/CLA+B/C^L extrapolation for the SCF component greatly enhances the numerical stability of the W1 method for systems with slow basis set convergence. Inclusion of first-order spin-orbit coupling is essential for accurate ionization potentials and electron affinities involving degenerate electronic states: inner-shell correlation is somewhat more important for ionization potentials than for electron affinities, while scalar relativistic effects are required for the highest accuracy. The mean deviation from experiment for the G2-1 heats of formation is within the average experimental uncertainty. W1 theory appears to be a valuable tool for obtaining benchmark quality proton affinities.Comment: Journal of Chemical Physics, in press (303115JCP). 2 RevTeX files, first is text and tables, second is E-PAPS tables S-1 through S-5. Additional supplementary material (total energies, basis function exponents) available at http://theochem.weizmann.ac.il/web/papers/w1w2.htm

    A definitive heat of vaporization of silicon through benchmark ab initio calculations on SiF_4

    Get PDF
    In order to resolve a significant uncertainty in the heat of vaporization of silicon -- a fundamental parameter in gas-phase thermochemistry -- ΔHf,0∘\Delta H^\circ_{f,0}[Si(g)] has been determined from a thermochemical cycle involving the precisely known experimental heats of formation of SiF_4(g) and F(g) and a benchmark calculation of the total atomization energy (TAE_0) of SiF_4 using coupled-cluster methods. Basis sets up to [8s7p6d4f2g1h][8s7p6d4f2g1h] on Si and [7s6p5d4f3g2h][7s6p5d4f3g2h] on F have been employed, and extrapolations for residual basis set incompleteness applied. The contributions of inner-shell correlation (-0.08 kcal/mol), scalar relativistic effects (-1.88 kcal/mol), atomic spin-orbit splitting (-1.97 kcal/mol), and anharmonicity in the zero-point energy (+0.04 kcal/mol) have all been explicitly accounted for. Our benchmark TAE_0=565.89 \pm 0.22 kcal/mol leads to ΔHf,0∘\Delta H^\circ_{f,0}[Si(g)]=107.15 \pm 0.38 kcal/mol (ΔHf,298∘\Delta H^\circ_{f,298}[Si(g)]=108.19 \pm 0.38 kcal/mol): between the JANAF/CODATA value of 106.5 \pm 1.9 kcal/mol and the revised value proposed by Grev and Schaefer [J. Chem. Phys. 97, 8389 (1992}], 108.1 \pm 0.5 kcal/mol. The revision will be relevant for future computational studies on heats of formation of silicon compounds.Comment: J. Phys. Chem. A, submitted Feb 1, 199

    Development of Novel Density Functionals for Thermochemical Kinetics

    Full text link
    A new density functional theory (DFT) exchange-correlation functional for the exploration of reaction mechanisms is proposed. This new functional, denoted BMK (Boese-Martin for Kinetics), has an accuracy in the 2 kcal/mol range for transition state barriers but, unlike previous attempts at such a functional, this improved accuracy does not come at the expense of equilibrium properties. This makes it a general-purpose functional whose domain of applicability has been extended to transition states, rather than a specialized functional for kinetics. The improvement in BMK rests on the inclusion of the kinetic energy density together with a large value of the exact exchange mixing coefficient. For this functional, the kinetic energy density appears to correct `back' the excess exact exchange mixing for ground-state properties, possibly simulating variable exchange.Comment: J. Chem. Phys., in press (303431JCP, scheduled for August 15, 2004 issue); supplementary data available at http://theochem.weizmann.ac.il/web/papers/BMK.htm

    Towards standard methods for benchmark quality ab initio thermochemistry --- W1 and W2 theory

    Full text link
    Two new schemes for computing molecular total atomization energies (TAEs) and/or heats of formation (ΔHf∘\Delta H^\circ_f) of first-and second-row compounds to very high accuracy are presented. The more affordable scheme, W1 (Weizmann-1) theory, yields a mean absolute error of 0.30 kcal/mol and includes only a single, molecule-independent, empirical parameter. It requires CCSD (coupled cluster with all single and double substitutions) calculations in spdfspdf and spdfgspdfg basis sets, while CCSD(T) [i.e. CCSD with a quasiperturbative treatment of connected triple excitations] calculations are only required in spdspd and spdfspdf basis sets. On workstation computers and using conventional coupled cluster algorithms, systems as large as benzene can be treated, while larger systems are feasible using direct coupled cluster methods. The more rigorous scheme, W2 (Weizmann-2) theory, contains no empirical parameters at all and yields a mean absolute error of 0.23 kcal/mol, which is lowered to 0.18 kcal/mol for molecules dominated by dynamical correlation. It involves CCSD calculations in spdfgspdfg and spdfghspdfgh basis sets and CCSD(T) calculations in spdfspdf and spdfgspdfg basis sets. On workstation computers, molecules with up to three heavy atoms can be treated using conventional coupled cluster algorithms, while larger systems can still be treated using a direct CCSD code. Both schemes include corrections for scalar relativistic effects, which are found to be vital for accurate results on second-row compounds.Comment: J. Chem. Phys., in press; text 30 pages RevTeX; tables 10 pages, HTML and PostScript versions both included Reason for replacement: fixed typos in Table II in proo

    MP2-F12 Basis Set Convergence for the S66 Noncovalent Interactions Benchmark: Transferability of the Complementary Auxiliary Basis Set (CABS)

    Full text link
    Complementary auxiliary basis sets for F12 explicitly correlated calculations appear to be more transferable between orbital basis sets than has been generally assumed. We also find that aVnZ-F12 basis sets, originally developed with anionic systems in mind, appear to be superior for noncovalent interactions as well, and propose a suitable CABS sequence for them.Comment: AIP Conference Proceedings, in press (ICCMSE-2017 proceedings), 4 page
    • …
    corecore