9 research outputs found

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    Antarctic subglacial lake exploration: a new frontier in microbial ecology

    No full text
    To date, wherever life has been sought on Earth, it has almost always been found—from high in the stratosphere (Imshenetskii et al., 1975, 1978, 1986; Wainwright et al., 2003) to deep in the ocean trenches (Takamia et al., 1997; D'Hondt et al., 2004) and even within the Earth's crust itself (Pedersen, 2000). Microorganisms have also been found in some of the most extreme environments. They have been found to exist in ice, boiling water, acid, salt crystals, toxic waste and even in the water cores of nuclear reactors (Rothschild and Mancinelli, 2001). Antarctic subglacial lake ecosystems have the potential to be one of the most extreme environments on Earth, with combined stresses of high pressure, low temperature, permanent darkness, low-nutrient availability and oxygen concentrations derived from the ice that provided the original meltwater (Siegert et al., 2003), where the predominant mode of nutrition is likely to be chemoautotrophic. Yet, to date, the identification of significant subglacial bacterial activity in the Arctic, beneath glaciers (Skidmore et al., 2000, 2005) and in subglacial lakes (Gaidos et al., 2004), as well as extensive work on permafrost communities and work in the deep sea, suggests that life can survive and potentially thrive in these types of environment. Microbial life has been shown to function at gigapascal pressures (Sharma et al., 2002) and bacteria recovered from the deep ocean at around 4000 m have been shown to retain both structural integrity and metabolic activity. They have shown activity in the Antarctic at −17 °C (Carpenter et al., 2000) and to exist in the pore spaces between ice crystals (Thomas and Dieckmann, 2002)

    Review of Measurement Techniques in Site Productivity Studies

    No full text
    This book is a synthesis of knowledge on the impacts of harvesting on long-term site productivity, stemming from information gathered from the International Energy Agency Bioenergy Agreement Project on Environmental Impacts of Intensive Harvesting. Annual workshops during the project have produced much new and important information and the work of over 150 collaborators on the project has been carefully synthesised into this book

    References

    No full text
    corecore