13 research outputs found
Hidden polymorphism of FAPbI3 discovered by Raman spectroscopy
Formamidinium lead iodide FAPbI3 can be used in its cubic, black form as a light absorber material in single junction solar cells. It has a band gap 1.5 eV close to the maximum of the Shockley Queisser limit, and reveals a high absorption coefficient. Its high thermal stability up to 320 C has also a downside, which is the instability of the photo active form at room temperature RT . Thus, the black amp; 945; phase transforms at RT with time into a yellow non photo active amp; 948; phase. The black phase can be recovered by annealing of the yellow state. In this work, a polymorphism of the amp; 945; phase at room temperature was found as synthesized amp; 945;i , degraded amp; 945; amp; 948; and thermally recovered amp; 945;rec . They differ in the Raman spectra and PL signal, but not in the XRD patterns. Using temperature dependent Raman spectroscopy, we identified a structural change in the amp; 945;i polymorph at ca. 110 C. Above 110 C, the FAPbI3 structure has undoubtedly cubic Pm[3 with combining macron]m symmetry high temperature phase amp; 945;HT . Below that temperature, the amp; 945;i phase was suggested to have a distorted perovskite structure with Im[3 with combining macron] symmetry. Thermally recovered FAPbI3 amp; 945;rec also demonstrated the structural transition to amp; 945;HT at the same temperature ca. 110 C during its heating. The understanding of hybrid perovskites may bring additional assets in the development of new and stable structure