61 research outputs found

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Limited Relationship between Cervico-Vaginal Fluid Cytokine Profiles and Cervical Shortening in Women at High Risk of Spontaneous Preterm Birth

    Get PDF
    Objective: to determine the relationship between high vaginal pro-inflammatory cytokines and cervical shortening in women at high risk of spontaneous preterm labor and to assess the influence of cervical cerclage and vaginal progesterone on this relationship. Methods: this prospective longitudinal observational study assessed 112 women with at least one previous preterm delivery between 16 and 34 weeks’ gestation. Transvaginal cervical length was measured and cervico-vaginal fluid sampled every two weeks until 28 weeks. If the cervix shortened (<25 mm) before 24 weeks’ gestation, women (cases) were randomly assigned to cerclage or progesterone and sampled weekly. Cytokine concentrations were measured in a subset of cervico-vaginal fluid samples (n = 477 from 78 women) by 11-plex fluid-phase immunoassay. Results: all 11 inflammatory cytokines investigated were detected in cervico-vaginal fluid from women at high risk of preterm birth, irrespective of later cervical shortening. At less than 24 weeks’ gestation and prior to intervention, women destined to develop a short cervix (n = 36) exhibited higher cervico-vaginal concentrations than controls (n = 42) of granulocyte-macrophage colony-stimulating factor [(GM-CSF) 16.2 fold increase, confidence interval (CI) 1.8–147; p = 0.01] and monocyte chemotactic protein-1 [(MCP-1) 4.8, CI 1.0–23.0; p = 0.05]. Other cytokines were similar between cases and controls. Progesterone treatment did not suppress cytokine concentrations. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-γ and tumour necrosis factor (TNF)-α concentrations were higher following randomization to cerclage versus progesterone (p<0.05). Cerclage, but not progesterone treatment, was followed by a significant increase in cervical length [mean 11.4 mm, CI 5.0–17.7; p<0.001]. Conclusions: although GM-CSF and MCP-1 cervico-vaginal fluid concentrations were raised, the majority of cervico-vaginal cytokines did not increase in association with cervical shortening. Progesterone treatment showed no significant anti-inflammation action on cytokine concentrations. Cerclage insertion was associated with an increase in the majority of inflammatory markers and cervical length

    Abnormal Dosage Compensation of Reporter Genes Driven by the Drosophila Glass Multiple Reporter (GMR) Enhancer-Promoter

    Get PDF
    In Drosophila melanogaster the male specific lethal (MSL) complex is required for upregulation of expression of most X-linked genes in males, thereby achieving X chromosome dosage compensation. The MSL complex is highly enriched across most active X-linked genes with a bias towards the 3′ end. Previous studies have shown that gene transcription facilitates MSL complex binding but the type of promoter did not appear to be important. We have made the surprising observation that genes driven by the glass multiple reporter (GMR) enhancer-promoter are not dosage compensated at X-linked sites. The GMR promoter is active in all cells in, and posterior to, the morphogenetic furrow of the developing eye disc. Using phiC31 integrase-mediated targeted integration, we measured expression of lacZ reporter genes driven by either the GMR or armadillo (arm) promoters at each of three X-linked sites. At all sites, the arm-lacZ reporter gene was dosage compensated but GMR-lacZ was not. We have investigated why GMR-driven genes are not dosage compensated. Earlier or constitutive expression of GMR-lacZ did not affect the level of compensation. Neither did proximity to a strong MSL binding site. However, replacement of the hsp70 minimal promoter with a minimal promoter from the X-linked 6-Phosphogluconate dehydrogenase gene did restore partial dosage compensation. Similarly, insertion of binding sites for the GAGA and DREF factors upstream of the GMR promoter led to significantly higher lacZ expression in males than females. GAGA and DREF have been implicated to play a role in dosage compensation. We conclude that the gene promoter can affect MSL complex-mediated upregulation and dosage compensation. Further, it appears that the nature of the basal promoter and the presence of binding sites for specific factors influence the ability of a gene promoter to respond to the MSL complex

    Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    Get PDF
    Background: Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings: We applied next-generation Illumina sequencing technology to analyze global gen

    Molecular basis of USP7 inhibition by selective small-molecule inhibitors

    Get PDF
    Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice

    A Century of Gibberellin Research

    Get PDF
    • …
    corecore