5 research outputs found

    Unintended consequences of existential quantifications in biomedical ontologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Open Biomedical Ontologies (OBO) Foundry is a collection of freely available ontologically structured controlled vocabularies in the biomedical domain. Most of them are disseminated via both the OBO Flatfile Format and the semantic web format Web Ontology Language (OWL), which draws upon formal logic. Based on the interpretations underlying OWL description logics (OWL-DL) semantics, we scrutinize the OWL-DL releases of OBO ontologies to assess whether their logical axioms correspond to the meaning intended by their authors.</p> <p>Results</p> <p>We analyzed ontologies and ontology cross products available via the OBO Foundry site <url>http://www.obofoundry.org</url> for existential restrictions (<it>someValuesFrom</it>), from which we examined a random sample of 2,836 clauses.</p> <p>According to a rating done by four experts, 23% of all existential restrictions in OBO Foundry candidate ontologies are suspicious (Cohens' <it>Îș </it>= 0.78). We found a smaller proportion of existential restrictions in OBO Foundry cross products are suspicious, but in this case an accurate quantitative judgment is not possible due to a low inter-rater agreement (<it>Îș </it>= 0.07). We identified several typical modeling problems, for which satisfactory ontology design patterns based on OWL-DL were proposed. We further describe several usability issues with OBO ontologies, including the lack of ontological commitment for several common terms, and the proliferation of domain-specific relations.</p> <p>Conclusions</p> <p>The current OWL releases of OBO Foundry (and Foundry candidate) ontologies contain numerous assertions which do not properly describe the underlying biological reality, or are ambiguous and difficult to interpret. The solution is a better anchoring in upper ontologies and a restriction to relatively few, well defined relation types with given domain and range constraints.</p

    ePlant and the 3D Data Display Initiative: Integrative Systems Biology on the World Wide Web

    Get PDF
    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed “ePlant” (http://bar.utoronto.ca/eplant) – a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the “3D Data Display Initiative” (http://3ddi.org)
    corecore