18 research outputs found

    Innovations in total knee replacement: new trends in operative treatment and changes in peri-operative management

    Get PDF
    The human knee joint can sustain damage due to injury, or more usually osteoarthritis, to one, two or all three of the knee compartments: the medial femorotibial, the lateral femorotibial and the patellofemoral compartments. When pain associated with this damage is unmanageable using nonsurgical techniques, knee replacement surgery might be the most appropriate course of action. This procedure aims to restore a pain-free, fully functional and durable knee joint. Total knee replacement is a well-established treatment modality, and more recently, partial knee replacement—more commonly known as bi- or unicompartmental knee replacement—has seen resurgence in interest and popularity. Combined with the use of minimally invasive surgery (MIS) techniques, gender-specific prosthetics and computer-assisted navigation systems, orthopaedic surgeons are now able to offer patients knee replacement procedures that are associated with (1) minimal risks during and after surgery by avoiding fat embolism, reducing blood loss and minimising soft tissue disruption; (2) smaller incisions; (3) faster and less painful rehabilitation; (4) reduced hospital stay and faster return to normal activities of daily living; (5) an improved range of motion; (6) less requirement for analgesics; and (7) a durable, well-aligned, highly functional knee. With the ongoing advancements in surgical technique, medical technology and prosthesis design, knee replacement surgery is constantly evolving. This review provides a personal account of the recent innovations that have been made, with a particular emphasis on the potential use of MIS techniques combined with computer-assisted navigation systems to treat younger, more physically active patients with resurfacing partial/total implant knee arthroplasty

    Tissue sparing surgery in knee reconstruction: unicompartmental (UKA), patellofemoral (PFA), UKA + PFA, bi-unicompartmental (Bi-UKA) arthroplasties

    Get PDF
    Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics

    Oxford Phase 3 unicompartmental knee arthroplasty: medium-term results of a minimally invasive surgical procedure

    Get PDF
    PURPOSE: In the last decade, a major increase in the use of and interest in unicompartmental knee arthroplasty (UKA) has developed. The Oxford Phase 3 UKA is implanted with a minimally invasive technique using newly developed instruments. The objective of this prospective study was to evaluate the outcome of UKA in patients with medial osteoarthritis of the knee in a high-volume unit. METHODS: Two-hundred and forty-four UKAs were performed with a minimally invasive approach. The median age was 72 (43-91) years. The median follow-up was 4.2 years (range 1-10.4 years). Fourteen patients died, and nine were considered to be lost to follow-up, but all had a well-functioning prosthesis in situ until their last follow-up. Pain, function and health-related quality of life were evaluated pre- and postoperatively using patient- and assessor-based outcome scores, as well as radiographic evidence. RESULTS: The mean Knee Society knee and function scores, WOMAC-scores, Oxford-score and VAS pain and satisfaction all improved. Nine knees required revision. Eleven patients required an additional arthroscopic procedure due to persisting pain secondary to intra-articular pathology, and four patients required manipulation under anaesthesia because of limited range of motion. The 7-year cumulative survival rate of the arthroplasty was 94.4%. A low incidence (21%) of a radiolucent line beneath the tibial component was observed at 5 years of follow-up. CONCLUSION: This study showed a high survival rate of the Oxford Phase 3 UKA. Patient satisfaction and functional performance were also very high. Major complication rate was low; in addition, the incidence of radiolucency under the tibial component, when compared to present literature, was low. When strict indication criteria are followed, excellent, durable, and in our opinion reliable, results can be expected for this procedur

    Minimally invasive total knee replacement : techniques and results

    Get PDF
    In this review, we outlined the definition of minimally invasive surgery (MIS) in total knee replacement (TKR) and described the different surgical approaches reported in the literature. Afterwards we went through the most recent studies assessing MIS TKR. Next, we searched for potential limitations of MIS knee replacement and tried to answer the following questions: Are there selective criteria and specific patient selection for MIS knee surgery? If there are, then what are they? After all, a discussion and conclusion completed this article. There is certainly room for MIS or at least less invasive surgery (LIS) for appropriate selected patients. Nonetheless, there are differences between approaches. Mini medial parapatellar is easy to master, quick to perform and potentially extendable, whereas mini subvastus and mini midvastus are trickier and require more caution related to risk of hematoma and VMO nerve damage. Current evidence on the safety and efficacy of mini-incision surgery for TKR does not appear fully adequate for the procedure to be used without special arrangements for consent and for audit or continuing research. There is an argument that a sudden jump from standard TKR to MIS TKR, especially without computer assistance such as navigation, patient specific instrumentation (PSI) or robotic, may breach a surgeon's duty of care toward patients because it exposes patients to unnecessary risks. As a final point, more evidence is required on the long-term safety and efficacy of this procedure which will give objective shed light on real benefits of MIS TKR

    Unicompartmental versus computer-assisted total knee replacement for medial compartment knee arthritis: a matched paired study

    No full text
    Patients older than 60 with unicompartmental knee arthritis can be treated with total or unicompartmental knee replacement. The aim of this study was to compare the results of matched paired groups of patients with isolated medial compartment knee arthritis replaced with either UKR (group A) or computer-assisted TKR (group B). The results included 68 knees at a minimum follow-up of 3 years. All patients had a varus deformity no greater than 8º and a BMI lower than 30. Patients were matched in terms of preoperative arthritis severity, age, gender and preoperative range of motion. In the computer-assisted TKR group, all the implants were positioned within 4º of the correct hip-knee-ankle angle and frontal tibial component angle. The surgical time and hospital stay were statistically longer in the CA TKR group. During the study no implant required revision. The results showed higher scores for a UKR in the treatment of isolated primary unicompartmental knee arthritis in patients older than 60 compared to a computer-assisted TKR. In this study a computer-assisted alignment system for TKR with optimal implant positioning did not produce equivalent clinical results compared to a UKR, but did increase the financial costs
    corecore