7 research outputs found

    Fuels, power and chemical periodicity

    No full text

    Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding

    No full text
    The 71.5%Mg–23.5%Ni–5%Fe alloy prepared by reactive mechanical grinding for 4 h does not need activation. The activated sample has the hydriding rate of 0.494 wt%/min for 5 min and absorbs 3.32 wt% for 60 min at 593 K under 1.2 MPa H2. It has the dehydriding rate of 0.330 wt%/min for 5 min and desorbs 2.42 wt%H for 20 min at 593 K 0.1 MPa H2. The XRD pattern of 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after reactive mechanical grinding exhibits MgH2 in addition to starting elements Mg, Ni, and Fe. 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after hydriding–dehydriding cycling contains Mg, Mg2Ni, MgO, and Fe. The reactive mechanical grinding of Mg with Ni and Fe is considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg, by the additive acting as active sites for the nucleation and shorten diffusion distances of hydrogen atoms by reducing the particle size of Mg. The MgH2 formed in the as-milled 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe alloy is considered to lead to the creation of more defects and finer particle size

    Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: a review

    No full text
    corecore