3 research outputs found

    Scapula kinematics of pull-up techniques: avoiding impingement risk with training changes

    No full text
    Overhead athletic activities and scapula dyskinesia are linked with shoulder pathology; pull-ups are a common training method for some overhead sports. Different pull-up techniques exist: anecdotally some are easier to perform, and others linked to greater incidences of pathology. This study aims to quantify scapular kinematics and external forces for three pull-up techniques, thus discussing potential injury implications.An observational study was performed with eleven participants (age=26.8±2.4 years) who regularly perform pull-ups.The upward motions of three pull-up techniques were analysed: palms facing anterior, palms facing posterior and wide-grip. A skin-fixed scapula tracking technique with attached retro-reflective markers was used.High intra-participant repeatability was observed: mean coefficients of multiple correlations of 0.87-1.00 in humerothoracic rotations and 0.77-0.90 for scapulothoracic rotations. Standard deviations of hand force was low: <5% body weight. Significantly different patterns of humerothoracic, scapulothoracic and glenohumeral kinematics were observed between the pull-up techniques. The reverse technique has extreme glenohumeral internal-external rotation and large deviation from the scapula plane. The wide technique has a reduced range of pro/retraction in the same HT plane of elevation and 90° of arm abduction with 45° external rotation was observed. All these factors suggest increased sub-acromial impingement risk.The scapula tracking technique showed high repeatability. High arm elevation during pull-ups reduces sub-acromial space and increases pressure, increasing the risk of impingement injury. Wide and reverse pull-ups demonstrate kinematics patterns linked with increased impingement risk. Weight-assisted front pull-ups require further investigation and could be recommended for weaker participants

    A survey of human shoulder functional kinematic representations

    No full text
    corecore