1,101 research outputs found

    Quantum Mechanics on SO(3) via Non-commutative Dual Variables

    Get PDF
    We formulate quantum mechanics on SO(3) using a non-commutative dual space representation for the quantum states, inspired by recent work in quantum gravity. The new non-commutative variables have a clear connection to the corresponding classical variables, and our analysis confirms them as the natural phase space variables, both mathematically and physically. In particular, we derive the first order (Hamiltonian) path integral in terms of the non-commutative variables, as a formulation of the transition amplitudes alternative to that based on harmonic analysis. We find that the non-trivial phase space structure gives naturally rise to quantum corrections to the action for which we find a closed expression. We then study both the semi-classical approximation of the first order path integral and the example of a free particle on SO(3). On the basis of these results, we comment on the relevance of similar structures and methods for more complicated theories with group-based configuration spaces, such as Loop Quantum Gravity and Spin Foam models.Comment: 29 pages; matches the published version plus footnote 7, a journal reference include

    FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in <em>Drosophila</em> S2 Cells

    Get PDF
    Copyright \ua9 2022 Coker, Katis, Fairhead, Schwenzer, Clemmensen, Frandsen, de Jongh, Gileadi, Burgess-Brown, Marsden, Midwood and Yue. Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster “S2” cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells

    Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing

    Get PDF
    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates

    Modular Synthesis of Bicyclic Twisted Amides and Anilines

    Get PDF
    Bridged amides and anilines display interesting properties owing to perturbation of conjugation of the nitrogen lone-pair with the adjacent π-system. A convergent approach to diazabicyclic scaffolds which contain either twisted amides or anilines is described, based on the photocatalysed hydroamination of cyclic enecarbamates and subsequent cyclisation. The modular nature of the synthesis allows for variation of the degree of ‘twist’ and hence the properties of the amides and anilines

    Beyond paradigm : The ‘what’ and the ‘how’ of classroom research

    Get PDF
    This article reviews studies in second language classroom research from a cross-theoretic perspective, arguing that the classroom holds the potential for bringing together researchers from opposing theoretical orientations. It shows how generative and general cognitive approaches share a view of language that implicates both implicit and explicit knowledge, and that holds a bias towards implicit knowledge. Arguing that it is implicit knowledge that should be the object of research, it proposes that classroom research would benefit from incorporating insights from a generative understanding of language. Specifically, there is a need for a more nuanced view of the complexity of language in terms of linguistic domain, and the interaction between those domains. Generative second language acquisition research that shows developmental differences in terms of both linguistic domain and interface is reviewed. The core argument is a call for more attention to the ‘what’ of language development in classroom research and, by implication, teaching practice. As such, the language classroom is seen to offer potential for research that goes beyond paradigm to address both the ‘what’ and the ‘how’ of language development

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Organizational factors and depression management in community-based primary care settings

    Get PDF
    Abstract Background Evidence-based quality improvement models for depression have not been fully implemented in routine primary care settings. To date, few studies have examined the organizational factors associated with depression management in real-world primary care practice. To successfully implement quality improvement models for depression, there must be a better understanding of the relevant organizational structure and processes of the primary care setting. The objective of this study is to describe these organizational features of routine primary care practice, and the organization of depression care, using survey questions derived from an evidence-based framework. Methods We used this framework to implement a survey of 27 practices comprised of 49 unique offices within a large primary care practice network in western Pennsylvania. Survey questions addressed practice structure (e.g., human resources, leadership, information technology (IT) infrastructure, and external incentives) and process features (e.g., staff performance, degree of integrated depression care, and IT performance). Results The results of our survey demonstrated substantial variation across the practice network of organizational factors pertinent to implementation of evidence-based depression management. Notably, quality improvement capability and IT infrastructure were widespread, but specific application to depression care differed between practices, as did coordination and communication tasks surrounding depression treatment. Conclusions The primary care practices in the network that we surveyed are at differing stages in their organization and implementation of evidence-based depression management. Practical surveys such as this may serve to better direct implementation of these quality improvement strategies for depression by improving understanding of the organizational barriers and facilitators that exist within both practices and practice networks. In addition, survey information can inform efforts of individual primary care practices in customizing intervention strategies to improve depression management.http://deepblue.lib.umich.edu/bitstream/2027.42/78269/1/1748-5908-4-84.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/2/1748-5908-4-84-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/3/1748-5908-4-84.pdfPeer Reviewe
    corecore