15 research outputs found
Edible Ectomycorrhizal Mushroom Molecular Response to Heavy Metals
Heavy metal pollution poses a significant threat to the environment, public, and soil health. Ectomycorrhizal fungi are thought to enhance mineral nutrition of their host plants and to confer increased tolerance toward toxic metals. The responses of mycorrhizal fungi to toxic metal cations are diverse and may consist of a reduced uptake of metals by extracellular or intracellular chelation or increased efflux out of the cell or into sequestering compartments.
Rhizosphere chemistry is critical to understanding the interactions of mycorrhizae with polluted soils. This, linked to the fact that mycorrhizal diversity is normally high, even on highly contaminated sites, suggests that this diversity may have a significant role in colonization of contaminated sites by ectomycorrhizal fungi. However, the molecular mechanisms underlying the response of ectomycorrhizal fungi to heavy metals in general remain poorly understood, although the recent Tuber melanosporum Vittad. genome sequencing and transcriptome analyses have obtained a global view of metal homeostasis-related genes and pathways in this fungus. The focus of this review is to describe and discuss the tolerance of the ectomycorrhizal fungi, in particular the edible ones, under heavy metal stress conditions
Transport of dissolved Si from soil to river: a conceptual mechanistic model
This paper reviews the processes which determine the concentrations of dissolved silicon (DSi) in soil water and proposes a mechanistic model for understanding the transport of Si through a typical podzol soil to the river. DSi present in natural waters originates from the dissolution of mineral and amorphous Si sources in the soil. However, the DSi concentration in natural waters will be dependent on both dissolution and deposition/precipitation processes. The net DSi export is controlled by soil composition like (mineralogy and saturated porosity) as well as water composition (pH, concentrations of organic acids, CO2 and electrolytes). These state variables together with production, polymerization and adsorption equations constitute a mechanistic framework determining DSi concentrations. For a typical soil profile in a temperate climate, we discuss how the values of these key controls differ in each soil horizon and how it influences the DSi transport. Additionally, the impact of external forcings such as seasonal climatic variations and land use, is evaluated. This model is a first step to better understand Si transport processes in soils and should be further validated with field measurements