20 research outputs found

    Effect of continuous nutrient enrichment on microalgae colonizing hard substrates

    Get PDF
    In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed

    Monitoring and modelling landscape dynamics

    Get PDF
    International audienceChanges in land cover and land use are among the most pervasive and important sources of recent alterations of the Earth's land surface.This special issue also presents new directions in modelling landscape dynamics. Agent-based models have primarily been used to simulate local land use and land cover changes processes with a focus on decision making (Le 2008; Matthews et al. 2007; Parker et al. 2003; Bousquet and Le Page 2001)

    Scenario-led habitat modelling of land use change impacts on key species

    Get PDF
    © 2015 Gearyet al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years) scenarios for the 800 km 2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5-30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and 'increased grazing' (the opposite conversion) the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of opencanopy forestry caused a proportional decrease in suitability, but suitability gains for the 'reduced grazing' scenario were nonlinear. 'Scenario-led' landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse
    corecore