358 research outputs found
Recommended from our members
Geographical limits of the Southeastern distribution of Aedes aegypti (Diptera, Culicidae) in Argentina
The current geographical distribution of Aedes aegypti in South America is dramatically expanding inside Argentina, reaching a wider distribution than during its early eradication in 1967. Simultaneously, cases of dengue have increased during the last few years, and the situation has been recently worsened by the confirmation of the presence of the different dengue serotypes simultaneously circulating in new regions. Here we report on the passive south-eastern dispersion of A. aegypti in Argentina.Fil: Díaz Nieto, Leonardo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biociencias Agrícolas y Ambientales. Grupo Vinculado al Centro de Estudios de la Biodiversidad y Biotecnología de Mar del Plata- INBA. Fundación para Investigaciones Biológicas Aplicadas; ArgentinaFil: Maciá, Arnaldo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; ArgentinaFil: Perotti, M. Alejandra. University of Reading. School of Biological Sciences; Reino UnidoFil: Berón, Corina Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biociencias Agrícolas y Ambientales. Grupo Vinculado al Centro de Estudios de la Biodiversidad y Biotecnología de Mar del Plata- INBA. Fundación para Investigaciones Biológicas Aplicadas; Argentin
The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti
Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement
An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.
ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly
Prediction of Dengue Disease Severity among Pediatric Thai Patients Using Early Clinical Laboratory Indicators
Patients with severe dengue illness typically develop complications in the later stages of illness, making early clinical management of all patients with suspected dengue infection difficult. An early prediction tool to identify which patients will have a severe dengue illness will improve the utilization of limited hospital resources in dengue endemic regions. We performed classification and regression tree (CART) analysis to establish predictive algorithms of severe dengue illness. Using a Thai hospital pediatric cohort of patients presenting within the first 72 hours of a suspected dengue illness, we developed diagnostic decision algorithms using simple clinical laboratory data obtained on the day of presentation. These algorithms correctly classified near 100% of patients who developed a severe dengue illness while excluding upwards of 50% of patients with mild dengue or other febrile illnesses. Our algorithms utilized white blood cell counts, percent white blood cell differentials, platelet counts, elevated aspartate aminotransferase, hematocrit, and age. If these algorithms can be validated in other regions and age groups, they will help in the clinical management of patients with suspected dengue illness who present within the first three days of fever onset
Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections
<p>Abstract</p> <p>Background</p> <p>Globally, arthropod-borne virus infections are increasingly common causes of severe febrile disease that can progress to long-term physical or cognitive impairment or result in early death. Because of the large populations at risk, it has been suggested that these outcomes represent a substantial health deficit not captured by current global disease burden assessments.</p> <p>Methods</p> <p>We reviewed newly available data on disease incidence and outcomes to critically evaluate the disease burden (as measured by disability-adjusted life years, or DALYs) caused by yellow fever virus (YFV), Japanese encephalitis virus (JEV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). We searched available literature and official reports on these viruses combined with the terms "outbreak(s)," "complication(s)," "disability," "quality of life," "DALY," and "QALY," focusing on reports since 2000. We screened 210 published studies, with 38 selected for inclusion. Data on average incidence, duration, age at onset, mortality, and severity of acute and chronic outcomes were used to create DALY estimates for 2005, using the approach of the current Global Burden of Disease framework.</p> <p>Results</p> <p>Given the limitations of available data, nondiscounted, unweighted DALYs attributable to YFV, JEV, CHIKV, and RVFV were estimated to fall between 300,000 and 5,000,000 for 2005. YFV was the most prevalent infection of the four viruses evaluated, although a higher proportion of the world's population lives in countries at risk for CHIKV and JEV. Early mortality and long-term, related chronic conditions provided the largest DALY components for each disease. The better known, short-term viral febrile syndromes caused by these viruses contributed relatively lower proportions of the overall DALY scores.</p> <p>Conclusions</p> <p>Limitations in health systems in endemic areas undoubtedly lead to underestimation of arbovirus incidence and related complications. However, improving diagnostics and better understanding of the late secondary results of infection now give a first approximation of the current disease burden from these widespread serious infections. Arbovirus control and prevention remains a high priority, both because of the current disease burden and the significant threat of the re-emergence of these viruses among much larger groups of susceptible populations.</p
Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh
Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects
Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence
Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation
Demographic and Clinical Features of Dengue Fever in Pakistan from 2003–2007: A Retrospective Cross-Sectional Study
Background: Demographic features of dengue fever have changed tremendously in Pakistan over the past two decades. Small scale studies from all over the country have reported different aspects of individual outbreaks during this time. However, there is scarcity of data looking at the overall trend of dengue virus infection in the country. In this study, we examined annual trends, seasonality, and clinical features of dengue fever in the Pakistani population.Methods: Demographic information and dengue IgM status of all patients tested for dengue IgM antibody at Aga Khan University Hospital from January 2003 to December 2007 were analyzed to look for trends of IgM-positive cases in Pakistan. In addition, clinical and biochemical parameters were abstracted retrospectively from medical records of all patients hospitalized with IgM-proven dengue fever between January 2006 and December 2007. These patients were categorized into dengue fever and dengue hemorrhagic fever according to the WHO severity grading scale.Results: Out of a total of 15040 patients (63.2% male and 36.8% female), 3952 (26.3%) tested positive for dengue IgM antibody. 209 IgM proven dengue patients were hospitalized during the study period. During 2003, IgM positive cases were seen only during the months of July-December. In contrast, such cases were detected throughout the year from the 2004– 2007. The median age of IgM positive patients decreased every year from 32.0 years in 2003 to 24.0 years in 2007 (p,0.001). Among hospitalized patients, nausea was the most common presenting feature found in 124/209 (59.3%) patients. Children presented with a higher median body temperature than adults (p = 0.010). In addition, neutropenia was seen more commonly in children while raised serum ALT levels were seen more commonly in adults (both p = 0.006). While a low total white cell count was more common in patients with dengue fever as compared to Dengue Hemorrhagic Fever (p = 0.020), neutropenia (p = 0.019), monocytosis (p = 0.001) and raised serum ALT level (p = 0.005) were observed more commonly in the latter group.Conclusions: Dengue virus is now endemic in Pakistan, circulating throughout the year with a peak incidence in the post monsoon period. Median age of dengue patients has decreased and younger patients may be more susceptible. Total and differential leukocyte counts may help identify patients at risk of hemorrhage
Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996-2005
<p>Abstract</p> <p>Background</p> <p>Despite intensive vector control efforts, dengue epidemics continue to occur throughout Southeast Asia in multi-annual cycles. Weather is considered an important factor in these cycles, but the extent to which the El Niño-Southern Oscillation (ENSO) is a driving force behind dengue epidemics remains unclear.</p> <p>Methods</p> <p>We examined the temporal relationship between El Niño and the occurrence of dengue epidemics, and constructed Poisson autoregressive models for incidences of dengue cases. Global ENSO records, dengue surveillance data, and local meteorological data in two geographically diverse regions in Thailand (the tropical southern coastal region and the northern inland mountainous region) were analyzed.</p> <p>Results</p> <p>The strength of El Niño was consistently a predictor for the occurrence of dengue epidemics throughout time lags from 1 to 11 months in the two selected regions of Thailand. Up to 22% (in 8 northern inland mountainous provinces) and 15% (in 5 southern tropical coastal provinces) of the variation in the monthly incidence of dengue cases were attributable to global ENSO cycles. Province-level predictive models were fitted using 1996-2004 data and validated with out-of-fit data from 2005. The multivariate ENSO index was an independent predictor in 10 of the 13 studied provinces.</p> <p>Conclusion</p> <p>El Niño is one of the important driving forces for dengue epidemics across the geographically diverse regions of Thailand; however, spatial heterogeneity in the effect exists. The effects of El Niño should be taken into account in future epidemic forecasting for public health preparedness.</p
- …