265 research outputs found

    Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy

    Get PDF
    Background: Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin.Methods: To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)—induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE).Results: Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1 week after SE.Conclusions: These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1 week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo

    Meta-Analysis of MicroRNAs Dysregulated in the Hippocampal Dentate Gyrus of Animal Models of Epilepsy.

    Get PDF
    The identification of mechanisms transforming normal to seizure-generating tissue after brain injury is key to developing new antiepileptogenic treatments. MicroRNAs (miRNAs) may act as regulators and potential treatment targets for epileptogenesis. Here, we undertook a meta-analysis of changes in miRNA expression in the hippocampal dentate gyrus (DG) following an epileptogenic insult in three epilepsy models. We identified 26 miRNAs significantly differentially expressed during epileptogenesis, and five differentially expressed in chronic epilepsy. Of these, 13 were not identified in any of the individual studies. To assess the role of these miRNAs, we predicted their mRNA targets and then filtered the list to include only target genes expressed in DG and negatively correlated with miRNA expression. Functional enrichment analysis of mRNA targets of miRNAs dysregulated during epileptogenesis suggested a role for molecular processes related to inflammation and synaptic function. Our results identify new miRNAs associated with epileptogenesis from existing data, highlighting the utility of meta-analysis in maximizing value from preclinical data

    Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy

    Get PDF
    Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p

    Increased CCL2, CCL3, CCL5, and IL-1β cytokine concentration in piriform cortex, hippocampus, and neocortex after pilocarpine-induced seizures

    Get PDF
    BACKGROUND: Cytokines and chemokines play an important role in the neuroinflammatory response to an initial precipitating injury such as status epilepticus (SE). These signaling molecules participate in recruitment of immune cells, including brain macrophages (microglia), as well as neuroplastic changes, deterioration of damaged tissue, and epileptogenesis. This study describes the temporal and brain region pattern expression of numerous cytokines, including chemokines, after pilocarpine-induced seizures and discusses them in the larger context of their potential involvement in the changes that precede the development of epilepsy. FINDINGS: Adult rats received pilocarpine to induce SE and 90 min after seizure onset were treated with diazepam to mitigate seizures. Rats were subsequently deeply anesthetized and brain regions (hippocampus, piriform cortex, neocortex, and cerebellum) were freshly dissected at 2, 6, and 24 h or 5 days after seizures. Using methodology identical to our previous studies, simultaneous assay of multiple cytokines (CCL2, CCL3, CCL5, interleukin IL-1β, tumor necrosis factor (TNF-α)), and vascular endothelial growth factor (VEGF) was performed and compared to control rats. These proteins were selected based on existing evidence implicating them in the epileptogenic progression. A robust increase in CCL2 and CCL3 concentrations in the hippocampus, piriform cortex, and neocortex was observed at all time-points. The concentrations peaked with a ~200-fold increase 24 h after seizures and were two orders of magnitude greater than the significant increases observed for CCL5 and IL-1β in the same brain structures. TNF-α levels were altered in the piriform cortex and neocortex (24 h) and in the hippocampus (5 days) after SE. CONCLUSIONS: Pilocarpine-induced status epilepticus causes a rapid increase of multiple cytokines in limbic and neocortical regions. Understanding the precise spatial and temporal pattern of cytokines and chemokine changes could provide more viable therapeutic targets to reduce, reverse, or prevent the development of epilepsy following a precipitating injury

    Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

    Get PDF
    Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world

    Observed hand cleanliness and other measures of handwashing behavior in rural Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed data from the baseline assessment of a large intervention project to describe typical handwashing practices in rural Bangladesh, and compare measures of hand cleanliness with household characteristics.</p> <p>Methods</p> <p>We randomly selected 100 villages from 36 districts in rural Bangladesh. Field workers identified 17 eligible households per village using systematic sampling. Field workers conducted 5-hour structured observations in 1000 households, and a cross-sectional assessment in 1692 households that included spot checks, an evaluation of hand cleanliness and a request that residents demonstrate their usual handwashing practices after defecation.</p> <p>Results</p> <p>Although 47% of caregivers reported and 51% demonstrated washing both hands with soap after defecation, in structured observation, only 33% of caregivers and 14% of all persons observed washed both hands with soap after defecation. Less than 1% used soap and water for handwashing before eating and/or feeding a child. More commonly people washed their hands only with water, 23% after defecation and 5% before eating. Spot checks during the cross sectional survey classified 930 caregivers (55%) and 453 children (28%) as having clean appearing hands. In multivariate analysis economic status and water available at handwashing locations were significantly associated with hand cleanliness among both caregivers and children.</p> <p>Conclusions</p> <p>A minority of rural Bangladeshi residents washed both hands with soap at key handwashing times, though rinsing hands with only water was more common. To realize the health benefits of handwashing, efforts to improve handwashing in these communities should target adding soap to current hand rinsing practices.</p

    Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density.</p> <p>Methods</p> <p>In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured.</p> <p>Results</p> <p>A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable.</p> <p>Conclusion</p> <p>ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.</p

    Hippocampal Desynchronization of Functional Connectivity Prior to the Onset of Status Epilepticus in Pilocarpine-Treated Rats

    Get PDF
    Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n = 9) and nonSE rats (n = 12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats

    Treatment of forefoot problems in older people: study protocol for a randomised clinical trial comparing podiatric treatment to standardised shoe advice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foot problems in general and forefoot problems in particular can lead to a decrease in mobility and a higher risk of falling. Forefoot problems increase with age and are more common in women than in men. Around 20% of people over 65 suffer from non-traumatic foot problems and 60% of these problems are localised in the forefoot. Little is known about the best way to treat forefoot problems in older people. The aim of this study is to compare the effects of two common modes of treatment in the Netherlands: shoe advice and podiatric treatment. This paper describes the design of this study.</p> <p>Methods</p> <p>The study is designed as a pragmatic randomised clinical trial (RCT) with 2 parallel intervention groups. People aged 50 years and over who have visited their general practitioner (GP) with non traumatic pain in the forefoot in the preceding year and those who will visit their GP during the recruitment period with a similar complaint will be recruited for this study. Participants must be able to walk unaided for 7 metres and be able to fill in questionnaires. Exclusion criteria are: rheumatoid arthritis, neuropathy of the foot or pain caused by skin problems (e.g. warts, eczema). Inclusion and exclusion criteria will be assessed by a screening questionnaire and baseline assessment. Those consenting to participation will be randomly assigned to either a group receiving a standardised shoe advice leaflet (n = 100) or a group receiving podiatric treatment (n = 100). Primary outcomes will be the severity of forefoot pain (0-10 on a numerical rating scale) and foot function (Foot Function 5-pts Index and Manchester Foot Pain and Disability Index). Treatment adherence, social participation and quality of life will be the secondary outcomes. All outcomes will be obtained through self-administered questionnaires at the start of the study and after 3, 6, 9 and 12 months. Data will be analysed according to the "intention-to-treat" principle using multilevel level analysis.</p> <p>Discussion</p> <p>Strength of this study is the comparison between two common primary care treatments for forefoot problems, ensuring a high external validity of this trial.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2212">NTR2212</a></p
    corecore