255 research outputs found
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
Biofield Therapies: Helpful or Full of Hype? A Best Evidence Synthesis
Biofield therapies (such as Reiki, therapeutic touch, and healing touch) are complementary medicine modalities that remain controversial and are utilized by a significant number of patients, with little information regarding their efficacy.
This systematic review examines 66 clinical studies with a variety of biofield therapies in different patient populations.
We conducted a quality assessment as well as a best evidence synthesis approach to examine evidence for biofield therapies in relevant outcomes for different clinical populations.
Studies overall are of medium quality, and generally meet minimum standards for validity of inferences. Biofield therapies show strong evidence for reducing pain intensity in pain populations, and moderate evidence for reducing pain intensity hospitalized and cancer populations. There is moderate evidence for decreasing negative behavioral symptoms in dementia and moderate evidence for decreasing anxiety for hospitalized populations. There is equivocal evidence for biofield therapies' effects on fatigue and quality of life for cancer patients, as well as for comprehensive pain outcomes and affect in pain patients, and for decreasing anxiety in cardiovascular patients.
There is a need for further high-quality studies in this area. Implications and future research directions are discussed
Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand
The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex
Overlap of cognitive concepts in chronic widespread pain: An exploratory study
<p>Abstract</p> <p>Background</p> <p>A wide variety of cognitive concepts have been shown to play an important role in chronic widespread pain (CWP). Although these concepts are generally considered to be distinct entities, some might in fact be highly overlapping. The objectives of this study were to (i) to establish inter-relationships between self-efficacy, cognitive coping styles, fear-avoidance cognitions and illness beliefs in patients with CWP and (ii) to explore the possibility of a reduction of these cognitions into a more limited number of domains.</p> <p>Methods</p> <p>Baseline measurement data of a prospective cohort study of 138 patients with CWP were used. Factor analysis was used to study the associations between 16 different cognitive concepts.</p> <p>Results</p> <p>Factor analysis resulted in three factors: 1) negative emotional cognitions, 2) active cognitive coping, and 3) control beliefs and expectations of chronicity.</p> <p>Conclusion</p> <p>Negative emotional cognitions, active cognitive coping, control beliefs and expectations of chronicity seem to constitute principal domains of cognitive processes in CWP. These findings contribute to the understanding of overlap and uniqueness of cognitive concepts in chronic widespread pain.</p
The Heritability of Aptitude and Exceptional Talent Across Different Domains in Adolescents and Young Adults
The origin of individual differences in aptitude, defined as a domain-specific skill within the normal ability range, and talent, defined as a domain specific skill of exceptional quality, is under debate. The nature of the variation in aptitudes and exceptional talents across different domains was investigated in a population based twin sample. Self-report data from 1,685 twin pairs (12–24 years) were analyzed for Music, Arts, Writing, Language, Chess, Mathematics, Sports, Memory, and Knowledge. The influence of shared environment was small for both aptitude and talent. Additive and non-additive genetic effects explained the major part of the substantial familial clustering in the aptitude measures with heritability estimates ranging between .32 and .71. Heritability estimates for talents were higher and ranged between .50 and .92. In general, the genetic architecture for aptitude and talent was similar in men and women. Genetic factors contribute to a large extent to variation in aptitude and talent across different domains of intellectual, creative, and sports abilities
Stress-Induced PARP Activation Mediates Recruitment of Drosophila Mi-2 to Promote Heat Shock Gene Expression
Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARP–dependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response
Evolution of light-harvesting complex proteins from Chl c-containing algae
<p>Abstract</p> <p>Background</p> <p>Light harvesting complex (LHC) proteins function in photosynthesis by binding chlorophyll (Chl) and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl <it>a </it>and <it>b </it>and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl <it>a </it>and <it>c</it>, and that are widely distributed in Chl <it>c</it>-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs.</p> <p>Results</p> <p>We reconstruct a phylogeny of LHCs from Chl <it>c</it>-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification.</p> <p>Conclusion</p> <p>The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed support for the hypothesized origin of Chl <it>c </it>plastids. This work also allows recent experimental findings about molecular function to be understood in a broader phylogenetic context.</p
Technology-supported learning innovation in cultural contexts
Many reform initiatives adopt a reductionist, proceduralized approach to cultural change, assuming that deep changes can be realized by introducing new classroom activities, textbooks, and technological tools. This article elaborates a complex system perspective of learning culture: A learning culture as a complex system involves macro-level properties (e.g., epistemological beliefs, social values, power structures) and micro-level features (e.g., technology, classroom activities). Deep changes in macro-level properties cannot be reduced to any component. This complex system perspective is applied to examining technology-supported educational change in East Asia and analyzing how teachers sustain the knowledge building innovation in different contexts. Working with the macro-micro dynamics in a learning culture requires a principle-based approach to learning innovation that specifies macro-level changes using principle-based instead of procedure-based terms and engages teachers’ deep reflection and creative engagement at both the macro- and the micro-level
Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis
The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically
- …