3,580 research outputs found
A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry
<p>Abstract</p> <p>Background</p> <p>High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate <it>de novo </it>sequencing for identification of post-translational modifications and amino acid polymorphisms.</p> <p>Results</p> <p>In this study, a new <it>de novo </it>sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of <it>Rhodopseudomonas palustris</it>. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of <it>de novo </it>sequenced spectra and the sequencing accuracy.</p> <p>Conclusions</p> <p>Here, we improved <it>de novo </it>sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at <url>http://compbio.ornl.gov/Vonode</url>.</p
Light MSSM Higgs boson mass to three-loop accuracy
The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy
within the Minimal Supersymmetric Standard Model (MSSM). The result is
expressed in terms of DRbar parameters and implemented in the computer program
H3m. The calculation is based on the proper approximations and their
combination in various regions of the parameter space. The three-loop effects
to Mh are typically of the order of a few hundred MeV and opposite in sign to
the two-loop corrections. The remaining theory uncertainty due to higher order
perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe
Folding of the apolipoprotein A1 driven by the salt concentration as a possible mechanism to improve cholesterol trapping
The folding of the cholesterol trapping apolipoprotein A1 in aqueous solution
at increasing ionic strength is studied using atomically detailed molecular
dynamics simulations. We calculate various structural properties to
characterize the conformation of the protein, such as the radius of gyration,
the radial distribution function and the end to end distance. Additionally we
report information using tools specifically tailored for the characterization
of proteins, such as the mean smallest distance matrix and the Ramachandran
plot. We find that two qualitatively different configurations of this protein
are preferred, one where the protein is extended, and one where it forms loops
or closed structures. It is argued that the latter promote the association of
the protein with cholesterol and other fatty acids.Comment: 14 pages, 6 figures. To appear in "Selected Topics of Computational
and Experimental Fluid Mechanics", Springer, J. Klapp, G. Ru\'iz, A. Medina,
A. L\'opez & L. Di G. Sigalotti (eds.), 201
Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome
We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet
Punctuated Chirality
Most biomolecules occur in mirror, or chiral, images of each other. However,
life is homochiral: proteins contain almost exclusively levorotatory (L) amino
acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The
mechanism behind this fundamental asymmetry of life remains an open problem.
Coupling the spatiotemporal evolution of a general autocatalytic polymerization
reaction network to external environmental effects, we show through a detailed
statistical analysis that high intensity and long duration events may drive
achiral initial conditions towards chirality. We argue that life's
homochirality resulted from sequential chiral symmetry breaking triggered by
environmental events, thus extending the theory of punctuated equilibrium to
the prebiotic realm. Applying our arguments to other potentially life-bearing
planetary platforms, we predict that a statistically representative sampling
will be racemic on average.Comment: 13 pages, 4 color figures. Final version published in Origins of Life
and Evolution of Biospheres. Typos corrected, figures improved, and a few
definitions and word usage clarifie
Establishing the baseline level of repetitive element expression in the human cortex
Background: Although nearly half of the human genome is comprised of repetitive sequences, the expression profile of these elements remains largely uncharacterized. Recently developed high throughput sequencing technologies provide us with a powerful new set of tools to study repeat elements. Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute. Results: We found a significant amount of reads from the human frontal cortex originate from repeat elements. We also noticed that Alu elements were expressed at levels higher than expected by random or background transcription. In contrast, L1 elements were expressed at lower than expected amounts. Conclusions: Repetitive elements are expressed abundantly in the human brain. This expression pattern appears to be element specific and can not be explained by random or background transcription. These results demonstrate that our knowledge about repetitive elements is far from complete. Further characterization is required to determine the mechanism, the control, and the effects of repeat element expression
Micro-spectroscopic investigation of selenium-bearing minerals from the Western US Phosphate Resource Area
Mining activities in the US Western Phosphate Resource Area (WPRA) have released Se into the environment. Selenium has several different oxidation states and species, each having varying degrees of solubility, reactivity, and bioavailability. In this study we are investigating the speciation of Se in mine-waste rocks. Selenium speciation was determined using bulk and micro-x-ray absorption spectroscopy (XAS), as well as micro-x-ray fluorescence mapping. Rocks used for bulk-XAS were ground into fine powders. Shale used for micro-XAS was broken along depositional planes to expose unweathered surfaces. The near edge region of the XAS spectra (XANES) for the bulk rock samples revealed multiple oxidation states, with peaks indicative of Se(-II), Se(IV), and Se(+VI) species. Micro-XANES analysis of the shale indicated that three unique Se-bearing species were present. Using the XANES data together with ab initio fitting of the extended x-ray absorption fine structure region of the micro-XAS data (micro-EXAFS) the three Se-bearing species were identified as dzharkenite, a di-selenide carbon compound, and Se-substituted pyrite. Results from this research will allow for a better understanding of the biogeochemical cycling of Se in the WPRA
A Critical Role for FBXW8 and MAPK in Cyclin D1 Degradation and Cancer Cell Proliferation
Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively
- …